-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
197 lines (157 loc) · 6.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch.nn as nn
import torch
import os
import sys
import argparse
import torchvision.datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.optim as optim
import datetime
import torch.cuda
CIFAR100_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
CIFAR100_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
CHECK_POINT_PATH = "./checkpoint"
MILESTONES = [60, 120, 160]
def training():
net.train()
length = len(trainloader)
total_sample = len(trainloader.dataset)
total_loss = 0
correct = 0
for step, (x, y) in enumerate(trainloader):
x = x.cuda()
y = y.cuda()
optimizer.zero_grad()
output = net(x)
loss = loss_function(output, y)
loss.backward()
optimizer.step()
total_loss += loss.item()
_, predict = torch.max(output, 1)
correct += (predict == y).sum()
fstep.write("Epoch:{}\t Step:{}\t TrainedSample:{}\t TotalSample:{}\t Loss:{:.3f}\n".format(
epoch+1, step+1, step*args.b + len(y), total_sample, loss.item()
))
fstep.flush()
if step % 10 == 0:
print("Epoch:{}\t Step:{}\t TrainedSample:{}\t TotalSample:{}\t Loss:{:.3f}".format(
epoch+1, step+1, step*args.b + len(y), total_sample, loss.item()
))
fepoch.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc:{:.3%}\n".format(
epoch + 1, total_loss/length, optimizer.param_groups[0]['lr'], float(correct)/ total_sample
))
fepoch.flush()
def evaluating():
net.eval()
length = len(testloader)
total_sample = len(testloader.dataset)
total_loss = 0
correct = 0
inference_time = 0
for step, (x, y) in enumerate(testloader):
x = x.cuda()
y = y.cuda()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
output = net(x)
_, predict = torch.max(output, 1)
end.record()
# Waits for everything to finish running
torch.cuda.synchronize()
inference_time += start.elapsed_time(end) # milliseconds
loss = loss_function(output, y)
total_loss += loss.item()
correct += (predict == y).sum()
acc = float(correct) / total_sample
feval.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc:{:.3%}\n".format(
epoch + 1, total_loss / length, optimizer.param_groups[0]['lr'], acc
))
feval.flush()
return acc, total_loss/length, inference_time
if __name__ == '__main__':
# arguments from command line
parser = argparse.ArgumentParser()
parser.add_argument("-net", default='mobilenet', help='net type')
parser.add_argument("-b", default=128, type=int, help='batch size')
parser.add_argument("-lr", default=0.1, help='initial learning rate', type=int)
parser.add_argument("-e", default=200, help='EPOCH', type=int)
parser.add_argument("-optim", default="SGD", help='optimizer')
args = parser.parse_args()
# data processing
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=CIFAR100_TRAIN_MEAN, std=CIFAR100_TRAIN_STD)
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=CIFAR100_TRAIN_MEAN, std=CIFAR100_TRAIN_STD)
])
traindata = torchvision.datasets.CIFAR100(root='./data', train=True, download=False, transform=transform_train)
testdata = torchvision.datasets.CIFAR100(root='./data', train=False, download=False, transform=transform_test)
trainloader = DataLoader(traindata, batch_size=args.b, shuffle=True, num_workers=2)
testloader = DataLoader(testdata, batch_size=args.b, shuffle=True, num_workers=2)
# define net
if args.net == 'mobilenet':
from models.mobilenet import mobilenet
net = mobilenet(1, 100).cuda()
elif args.net == 'mobilenetv2':
from models.mobilenetv2 import mobilenetv2
net = mobilenetv2(1, 100).cuda()
elif args.net == 'shufflenet':
from models.shufflenet import shufflenet
net = shufflenet([4, 8, 4], 3, 1, 100).cuda()
elif args.net == 'shufflenetv2':
from models.shufflenetv2 import shufflenetv2
net = shufflenetv2(100, 1).cuda()
elif args.net == 'efficientnetb0':
from models.efficientnet import efficientnet
print("loading net")
net = efficientnet(1, 1, 100, bn_momentum=0.9).cuda()
print("loading finish")
else:
print('We don\'t support this net.')
sys.exit()
# define loss, optimizer, lr_scheduler and checkpoint path
print("defining training")
loss_function = nn.CrossEntropyLoss()
if args.optim == "SGD":
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
else:
optimizer = optim.RMSprop(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=MILESTONES, gamma=0.2, last_epoch=-1)
time = str(datetime.date.today() + datetime.timedelta(days=1))
checkpoint_path = os.path.join(CHECK_POINT_PATH, args.net, time)
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
print("defining finish")
# train and eval
best_acc = 0
total_time = 0
with open(os.path.join(checkpoint_path, 'EpochLog.txt'), 'w') as fepoch:
with open(os.path.join(checkpoint_path, 'StepLog.txt'), 'w') as fstep:
with open(os.path.join(checkpoint_path, 'EvalLog.txt'), 'w') as feval:
with open(os.path.join(checkpoint_path, 'Best.txt'), 'w') as fbest:
print("start training")
for epoch in range(args.e):
training()
print("evaluating")
accuracy, averageloss, inference_time = evaluating()
scheduler.step()
print("saving regular")
torch.save(net.state_dict(), os.path.join(checkpoint_path, 'regularParam.pth'))
if accuracy > best_acc:
print("saving best")
torch.save(net.state_dict(), os.path.join(checkpoint_path, 'bestParam.pth'))
fbest.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc:{:.3%}\n".format(
epoch + 1, averageloss, optimizer.param_groups[0]['lr'], accuracy
))
fbest.flush()
best_acc = accuracy
# print(inference_time)
total_time += (inference_time/len(testloader.dataset))
print(total_time)
print(total_time / args.e)