-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransformer.py
239 lines (202 loc) · 10.7 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from dataclasses import dataclass
import math
import torch
import torch.nn as nn
@dataclass
class TransformerConfig:
source_vocab_size: int
target_vocab_size: int
source_sequence_length: int
target_sequence_length: int
d_model: int = 512
Layers: int = 6
heads: int = 8
dropout: float = 0.1
d_ff: int = 2048
class SetntenceEmbeddingsLayer(nn.Module):
def __init__(self, d_model: int, vocab_size: int) -> None:
super().__init__()
self.d_model = d_model
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, d_model)
def forward(self, x):
return self.embedding(x) * math.sqrt(self.d_model)
class PositionalEncodingLayer(nn.Module):
def __init__(self, d_model: int, sequence_length: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model
self.sequence_length = sequence_length
self.dropout = nn.Dropout(dropout)
PE = torch.zeros(sequence_length, d_model)
Position = torch.arange(0, sequence_length, dtype=torch.float).unsqueeze(1)
deviation_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
PE[:, 0::2] = torch.sin(Position * deviation_term)
PE[:, 1::2] = torch.cos(Position * deviation_term)
PE = PE.unsqueeze(0)
self.register_buffer('PE', PE)
def forward(self, x):
x = x + (self.PE[:, :x.shape[1], :]).requires_grad_(False)
return self.dropout(x)
class NormalizationLayer(nn.Module):
def __init__(self, Epslone: float = 10**-6) -> None:
super().__init__()
self.Epslone = Epslone
self.Alpha = nn.Parameter(torch.ones(1))
self.Bias = nn.Parameter(torch.ones(1))
def forward(self, x):
mean = x.mean(dim = -1, keepdim = True)
std = x.std(dim = -1, keepdim = True)
return self.Alpha * (x - mean) / (std + self.Epslone) + self.Bias
class MultiLayerPerceptronBlock(nn.Module):
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
super().__init__()
self.Linear_1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.Linear_2 = nn.Linear(d_ff, d_model)
def forward(self, x):
return self.Linear_2(self.dropout(torch.relu(self.Linear_1(x))))
class MultiHeadAttentionBlock(nn.Module):
def __init__(self, d_model: int, heads: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model
self.heads = heads
assert d_model % heads == 0 , "d_model is not divisible by heads"
self.d_k = d_model // heads
self.W_Q = nn.Linear(d_model, d_model)
self.W_K = nn.Linear(d_model, d_model)
self.W_V = nn.Linear(d_model, d_model)
self.W_O = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
@staticmethod
def Attention(query, key, value, mask, dropout: nn.Dropout):
d_k = query.shape[-1]
self_attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
self_attention_scores.masked_fill_(mask == 0, -1e9)
self_attention_scores = self_attention_scores.softmax(dim=-1)
if dropout is not None:
self_attention_scores = dropout(self_attention_scores)
return (self_attention_scores @ value), self_attention_scores
def forward(self, query, key, value, mask):
Query = self.W_Q(query)
Key = self.W_K(key)
Value = self.W_V(value)
Query = Query.view(Query.shape[0], Query.shape[1], self.heads, self.d_k).transpose(1,2)
Key = Key.view(Key.shape[0], Key.shape[1], self.heads, self.d_k).transpose(1,2)
Value = Value.view(Value.shape[0], Value.shape[1], self.heads, self.d_k).transpose(1,2)
x, self.self_attention_scores = MultiHeadAttentionBlock.Attention(Query, Key, Value, mask, self.dropout)
x = x.transpose(1,2).contiguous().view(x.shape[0], -1, self.heads * self.d_k)
return self.W_O(x)
class ResidualConnection(nn.Module):
def __init__(self, dropout: float) -> None:
super().__init__()
self.dropout = nn.Dropout(dropout)
self.normalization = NormalizationLayer()
def forward(self, x, subLayer):
return x + self.dropout(subLayer(self.normalization(x)))
class EncoderBlock(nn.Module):
def __init__(self,
encoder_self_attention_block: MultiHeadAttentionBlock,
encoder_feed_forward_block: MultiLayerPerceptronBlock,
dropout: float) -> None:
super().__init__()
self.encoder_self_attention_block = encoder_self_attention_block
self.encoder_feed_forward_block = encoder_feed_forward_block
self.residual_connection = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)])
def forward(self, x, source_mask):
x = self.residual_connection[0](x, lambda x: self.encoder_self_attention_block(x, x, x, source_mask))
x = self.residual_connection[1](x, self.encoder_feed_forward_block)
return x
class SequentialEncoder(nn.Module):
def __init__(self, Layers: nn.ModuleList) -> None:
super().__init__()
self.Layers = Layers
self.normalization = NormalizationLayer()
def forward(self, x, source_mask):
for layer in self.Layers:
x = layer(x, source_mask)
return self.normalization(x)
class DecoderBlock(nn.Module):
def __init__(self,
decoder_self_attention_block: MultiHeadAttentionBlock,
decoder_cross_attention_block: MultiHeadAttentionBlock,
decoder_feed_forward_block: MultiLayerPerceptronBlock,
dropout: float) -> None:
super().__init__()
self.decoder_self_attention_block = decoder_self_attention_block
self.decoder_cross_attention_block = decoder_cross_attention_block
self.decoder_feed_forward_block = decoder_feed_forward_block
self.residual_connection = nn.ModuleList([ResidualConnection(dropout) for _ in range(3)])
def forward(self, x, Encoder_output, maks, target_mask):
x = self.residual_connection[0](x, lambda x: self.decoder_self_attention_block(x, x, x, target_mask))
x = self.residual_connection[1](x, lambda x: self.decoder_cross_attention_block(x, Encoder_output, Encoder_output, target_mask))
x = self.residual_connection[2](x, self.decoder_feed_forward_block)
return x
class SequentialDecoder(nn.Module):
def __init__(self, Layers: nn.ModuleList) -> None:
super().__init__()
self.Layers = Layers
self.normalization = NormalizationLayer()
def forward(self, x, Encoder_output, mask, target_mask):
for layer in self.Layers:
x = layer(x, Encoder_output, mask, target_mask)
return self.normalization(x)
class LinearLayer(nn.Module):
def __init__(self, d_model: int, vocab_size: int) -> None:
super().__init__()
self.Linear = nn.Linear(d_model, vocab_size)
def forward(self, x):
return self.Linear(x)
class TransformerBlock(nn.Module):
def __init__(self,
encoder: SequentialEncoder,
decoder: SequentialDecoder,
source_embedding: SetntenceEmbeddingsLayer,
target_embedding: SetntenceEmbeddingsLayer,
source_position: PositionalEncodingLayer,
target_position: PositionalEncodingLayer,
Linear: LinearLayer) -> None:
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.source_embedding = source_embedding
self.target_embedding = target_embedding
self.source_position = source_position
self.target_position = target_position
self.Linear = Linear
def encode(self, source_language, source_mask):
source_language = self.source_embedding(source_language)
source_language = self.source_position(source_language)
return self.encoder(source_language, source_mask)
def decode(self, Encoder_output, mask, target_language, target_mask):
target_language = self.target_embedding(target_language)
target_language = self.target_position(target_language)
return self.decoder(target_language, Encoder_output, mask, target_mask)
def linear(self, x):
return self.Linear(x)
def TransformerModel(transformer: TransformerConfig)->TransformerBlock:
source_embedding = SetntenceEmbeddingsLayer(transformer.d_model, transformer.source_vocab_size)
source_position = PositionalEncodingLayer(transformer.d_model, transformer.source_sequence_length, transformer.dropout)
target_embedding = SetntenceEmbeddingsLayer(transformer.d_model, transformer.target_vocab_size)
target_position = PositionalEncodingLayer(transformer.d_model, transformer.target_sequence_length, transformer.dropout)
EncoderBlocks = []
for _ in range(transformer.Layers):
encoder_self_attention_block = MultiHeadAttentionBlock(transformer.d_model, transformer.heads, transformer.dropout)
encoder_feed_forward_block = MultiLayerPerceptronBlock(transformer.d_model, transformer.d_ff, transformer.dropout)
encoder_block = EncoderBlock(encoder_self_attention_block, encoder_feed_forward_block, transformer.dropout)
EncoderBlocks.append(encoder_block)
DecoderBlocks = []
for _ in range(transformer.Layers):
decoder_self_attention_block = MultiHeadAttentionBlock(transformer.d_model, transformer.heads, transformer.dropout)
decoder_cross_attention_block = MultiHeadAttentionBlock(transformer.d_model, transformer.heads, transformer.dropout)
decoder_feed_forward_block = MultiLayerPerceptronBlock(transformer.d_model, transformer.d_ff, transformer.dropout)
decoder_block = DecoderBlock(decoder_self_attention_block, decoder_cross_attention_block, decoder_feed_forward_block, transformer.dropout)
DecoderBlocks.append(decoder_block)
encoder = SequentialEncoder(nn.ModuleList(EncoderBlocks))
decoder = SequentialDecoder(nn.ModuleList(DecoderBlocks))
linear = LinearLayer(transformer.d_model, transformer.target_vocab_size)
Transformer = TransformerBlock(encoder, decoder, source_embedding, target_embedding, source_position, target_position, linear)
for T in Transformer.parameters():
if T.dim() > 1:
nn.init.xavier_uniform(T)
return Transformer