-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterator_lr.py
73 lines (52 loc) · 2.04 KB
/
iterator_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import subprocess
import json
from utils.util import read_config, get_logger
import numpy as np
import argparse
def args_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
'--filename',
default=[], help='configuration filename',
action="append")
parser.add_argument('--dry-run', action='store_true', help='do not fire')
return parser.parse_args()
if __name__ == "__main__":
args = args_parser()
mylogger = get_logger("Iterator")
mylogger.debug(args)
# Loop over multiple files
for filename in args.filename:
config = read_config(filename)
models = ["cnn", "leaf"]
for model in models:
if (model == "cnn") and (config["dataset"] in ["cifar100"]):
mylogger.warning("Skipping one CNN test")
continue
if (model == "leaf") and (config["dataset"] in ["cifar100"]):
mylogger.warning("Skipping one LEAF test")
continue
pvals = np.logspace(-5,-3, 8)
mylogger.info(f"Starting experiment with {model} from {filename} with lr={pvals}")
child_processes = []
# Make variable replacable
for n, p in enumerate(pvals):
config["model"] = model
config["lr"] = p
config["ft_lr"] = p
config["local_lr"] = p
config["moe_lr"] = p
config["gpu"] = n % 8
dataset = config["dataset"]
config["filename"] = f"results_{dataset}_{model}_lr_{p}.csv"
command = ["python", "main_fed.py"]
for k, v in config.items():
command.extend([f"--{k}", str(v)])
# command.extend(["--overlap"])
mylogger.debug(command)
# Allow dry-runs
if not args.dry_run:
p = subprocess.Popen(command)
child_processes.append(p)
for cp in child_processes:
cp.wait()