-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
157 lines (127 loc) · 5.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import Dataset, DataLoader
import pandas as pd
class PersianDigitsDataset(Dataset):
def __init__(self, csv_file):
self.persian_digits_frame = pd.read_csv(csv_file)
def __len__(self):
return len(self.persian_digits_frame)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
return torch.Tensor(self.persian_digits_frame.iloc[idx][1:]).reshape([1, 28, 28]), self.persian_digits_frame.iloc[idx][0]
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train epoch: {} [{}/{} ({:.0f}%)]\tloss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def validation(args, model, device, validation_loader):
model.eval()
validation_loss = 0
correct = 0
with torch.no_grad():
for data, target in validation_loader:
data, target = data.to(device), target.to(device)
output = model(data)
validation_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
validation_loss /= len(validation_loader.dataset)
print('\nValidation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
validation_loss, correct, len(validation_loader.dataset),
100. * correct / len(validation_loader.dataset)))
def test(args, model, device, test_loader):
model.eval()
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
print("Predicted result:")
for i in range(len(pred)):
print(str(i) + "," + str(int(pred[i])))
def main():
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--validation-batch-size', type=int, default=512, metavar='N',
help='input batch size for validation (default: 512)')
parser.add_argument('--test-batch-size', type=int, default=512, metavar='N',
help='input batch size for test (default: 512)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 20)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
PersianDigitsDataset("large_dataset_train.csv"),
batch_size=args.batch_size, shuffle=True, **kwargs)
validation_loader = torch.utils.data.DataLoader(
PersianDigitsDataset("large_dataset_validation.csv"),
batch_size=args.validation_batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
PersianDigitsDataset("large_dataset_test.csv"),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
validation(args, model, device, validation_loader)
scheduler.step()
test(args, model, device, test_loader)
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == '__main__':
main()