27
27
from tpot2 .builtin_modules import AddTransformer , mul_neg_1_Transformer , MulTransformer , SafeReciprocalTransformer , EQTransformer , NETransformer , GETransformer , GTTransformer , LETransformer , LTTransformer , MinTransformer , MaxTransformer , ZeroTransformer , OneTransformer , NTransformer
28
28
from tpot2 .builtin_modules .genetic_encoders import DominantEncoder , RecessiveEncoder , HeterosisEncoder , UnderDominanceEncoder , OverDominanceEncoder
29
29
from tpot2 .builtin_modules import ZeroCount , ColumnOneHotEncoder , PassKBinsDiscretizer
30
- from tpot2 .builtin_modules import Passthrough
30
+ from tpot2 .builtin_modules import Passthrough , SkipTransformer
31
31
from sklearn .linear_model import SGDClassifier , LogisticRegression , SGDRegressor , Ridge , Lasso , ElasticNet , Lars , LassoLars , LassoLarsCV , RidgeCV , ElasticNetCV , PassiveAggressiveClassifier , ARDRegression
32
32
from sklearn .ensemble import BaggingClassifier , RandomForestClassifier , ExtraTreesClassifier , GradientBoostingClassifier , ExtraTreesRegressor , ExtraTreesClassifier , AdaBoostRegressor , AdaBoostClassifier , GradientBoostingRegressor ,RandomForestRegressor , BaggingRegressor , ExtraTreesRegressor , HistGradientBoostingClassifier , HistGradientBoostingRegressor
33
33
from sklearn .neural_network import MLPClassifier , MLPRegressor
45
45
from sklearn .feature_selection import f_classif , f_regression #TODO create a selectomixin using these?
46
46
from sklearn .discriminant_analysis import LinearDiscriminantAnalysis , QuadraticDiscriminantAnalysis
47
47
from sklearn .gaussian_process import GaussianProcessRegressor , GaussianProcessClassifier
48
-
48
+ from sklearn . impute import SimpleImputer
49
49
50
50
all_methods = [SGDClassifier , RandomForestClassifier , ExtraTreesClassifier , GradientBoostingClassifier , MLPClassifier , DecisionTreeClassifier , XGBClassifier , KNeighborsClassifier , SVC , LogisticRegression , LGBMClassifier , LinearSVC , GaussianNB , BernoulliNB , MultinomialNB , ExtraTreesRegressor , RandomForestRegressor , GradientBoostingRegressor , BaggingRegressor , DecisionTreeRegressor , KNeighborsRegressor , XGBRegressor , ZeroCount , ColumnOneHotEncoder , Binarizer , FastICA , FeatureAgglomeration , MaxAbsScaler , MinMaxScaler , Normalizer , Nystroem , PCA , PolynomialFeatures , RBFSampler , RobustScaler , StandardScaler , SelectFwe , SelectPercentile , VarianceThreshold , SGDRegressor , Ridge , Lasso , ElasticNet , Lars , LassoLars , LassoLarsCV , RidgeCV , SVR , LinearSVR , AdaBoostRegressor , GradientBoostingRegressor , RandomForestRegressor , BaggingRegressor , ExtraTreesRegressor , DecisionTreeRegressor , KNeighborsRegressor , ElasticNetCV ,
51
51
AdaBoostClassifier ,MLPRegressor ,
54
54
PowerTransformer , QuantileTransformer ,ARDRegression , QuadraticDiscriminantAnalysis , PassiveAggressiveClassifier , LinearDiscriminantAnalysis ,
55
55
DominantEncoder , RecessiveEncoder , HeterosisEncoder , UnderDominanceEncoder , OverDominanceEncoder ,
56
56
GaussianProcessClassifier , BaggingClassifier ,LGBMRegressor ,
57
- Passthrough ,
57
+ Passthrough ,SkipTransformer ,
58
58
PassKBinsDiscretizer ,
59
+ SimpleImputer ,
59
60
]
60
61
61
62
123
124
"all_transformers" : ["transformers" , "scalers" ],
124
125
125
126
"arithmatic" : ["AddTransformer" , "mul_neg_1_Transformer" , "MulTransformer" , "SafeReciprocalTransformer" , "EQTransformer" , "NETransformer" , "GETransformer" , "GTTransformer" , "LETransformer" , "LTTransformer" , "MinTransformer" , "MaxTransformer" ],
126
- "imputers" : [],
127
+ "imputers" : ["SimpleImputer" ],
127
128
"skrebate" : ["ReliefF" , "SURF" , "SURFstar" , "MultiSURF" ],
128
129
"genetic_encoders" : ["DominantEncoder" , "RecessiveEncoder" , "HeterosisEncoder" , "UnderDominanceEncoder" , "OverDominanceEncoder" ],
129
130
135
136
136
137
def get_configspace (name , n_classes = 3 , n_samples = 1000 , n_features = 100 , random_state = None ):
137
138
match name :
139
+ case "SimpleImputer" :
140
+ return imputers .simple_imputer_cs
138
141
139
142
#autoqtl_builtins.py
140
143
case "FeatureEncodingFrequencySelector" :
@@ -152,6 +155,8 @@ def get_configspace(name, n_classes=3, n_samples=1000, n_features=100, random_st
152
155
153
156
case "Passthrough" :
154
157
return {}
158
+ case "SkipTransformer" :
159
+ return {}
155
160
156
161
#classifiers.py
157
162
case "LinearDiscriminantAnalysis" :
0 commit comments