-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
60 lines (45 loc) · 1.94 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Building the CNN
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
training_set = train_datagen.flow_from_directory('dataset/train',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory('dataset/test',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
classifier.fit(training_set,
steps_per_epoch=8000,
epochs=25,
validation_data=test_set,
validation_steps=2000)
# for save model
classifier.save('model.h5')