This repository has been archived by the owner on Jul 8, 2023. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathnonlinear_stretch.py
208 lines (153 loc) · 6.78 KB
/
nonlinear_stretch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#from matplotlib import pyplot as plt
import math
import numpy as np
import cv2
class NonlinearStretch:
"""Class for nonlinear stretching of images using cv2 maps
"""
def __init__(self, in_size = (12,9), out_size = (16,9), safe_area = 0, expo = 2):
self.in_size = in_size
self.out_size = out_size
self.safe_area = safe_area
self.expo = expo
self.map1 = np.zeros((out_size[1], out_size[0])) # x coords
self.map2 = np.zeros((out_size[1], out_size[0])) # y coords
def set_safe_area(self, safe_area):
"""Set untouched safe area
Args:
safe_area (float): Safe area (0-1)
"""
self.safe_area = min(safe_area, 0.999)
def set_in_size(self, in_size):
"""Set image input size
Args:
in_size (int, int): (width, height)
"""
self.in_size = in_size
def set_expo(self, expo = 2):
"""Set nonlinear stretch expo
Args:
expo (float): Default value of 2 works fine
"""
# expo<1: Gets real weird
# expo=1: Linear stretch
# expo=2: Similar to superview
# expo=3: More non-linear
# expo>3: Gets wonky
self.expo = expo
def set_out_size(self, out_size):
"""Set image output size
Args:
in_size (int, int): (width, height)
"""
self.out_size = out_size
self.map1 = np.zeros((out_size[1], out_size[0]))
self.map2 = np.zeros((out_size[1], out_size[0]))
def recompute_maps(self):
"""Recompute image maps for the nonlinear stretch operation
required after any changes to parameters of image sizes
"""
vertical_scale = self.out_size[1] / self.in_size[1] # Image scaling to match height
# width of side pillar with no stretching (source image scale)
pillar_width = (self.out_size[0]/vertical_scale - self.in_size[0]) / 2
self.map1 = np.tile(np.arange(self.out_size[0]), (self.out_size[1],1))
# center source image. 0.5 to fix mapping offset
self.map1 = self.map1 / vertical_scale - pillar_width - 0.5
# stretch offset computation
# inspired by https://github.com/banelle/derperview
# create array of x values normalized to -1 < x < 1
normalized_xcoords = np.tile(np.arange(self.out_size[0]), (self.out_size[1],1))
normalized_xcoords = (normalized_xcoords / self.out_size[0] - 0.5) * 2
val_sign = np.zeros((self.out_size[1], self.out_size[0]))
val_sign[normalized_xcoords<0] = -1
val_sign[normalized_xcoords>=0] = 1
offset_map = ((abs(normalized_xcoords) - self.safe_area) / (1 - self.safe_area))**self.expo
# reset safe area offset to 0
offset_map[abs(normalized_xcoords) < self.safe_area] = 0
# correct sign and scale
offset_map = np.multiply(offset_map, val_sign) * pillar_width
self.map1 = self.map1 - offset_map
# y map for scaling only
# identity map
self.map2 = np.tile(np.vstack(np.arange(self.out_size[1])), (1, self.out_size[0]))
# scale and fix offset
self.map2 = self.map2 / vertical_scale - 0.5
# convert to datatype supported by opencv
self.map1 = self.map1.astype('float32')
self.map2 = self.map2.astype('float32')
def compute_remap_val(self, tx, target_width, src_width, safe_area = 0.0, expo = 5):
x = (float(tx)/ target_width - 0.5) * 2
blanking = (target_width - src_width) / 2
sx = tx - blanking # shift source pixels by left blanking
offset = 0
if abs(x) >= safe_area:
offset = ((abs(x) - safe_area) /(1- safe_area))**expo * (-1 if x < 0 else 1) * blanking
final_px = sx - offset
return final_px
def apply_stretch(self, img, show_protected = False):
"""Apply nonlinear stretch to cv2 image
Args:
img (np.ndarray): cv2 image
show_protected (bool, optional): Show safe area. Defaults to False.
Returns:
np.ndarray: cv2 image
"""
out_img = cv2.remap(img, self.map1.astype('float32'), self.map2.astype('float32'), cv2.INTER_CUBIC )
if show_protected:
midpoint = out_img.shape[1] / 2
safe_dist = self.safe_area * out_img.shape[1] / 2
line1 = int(midpoint + safe_dist)
line2 = int(midpoint - safe_dist)
cv2.line(out_img,(line1, 0),(line1,out_img.shape[0]),(255,255,0),2)
cv2.line(out_img,(line2, 0),(line2,out_img.shape[0]),(255,255,0),2)
return out_img
def stretch_save_video(self, inpath, outpath = "stretched.mp4"):
"""Load, stretch, and save video
Args:
inpath (string): Input file path
outpath (str, optional): Output file path. Defaults to "stretched.mp4".
"""
cap = cv2.VideoCapture(inpath)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
fps = cap.get(cv2.CAP_PROP_FPS)
num_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
self.set_in_size((width, height))
self.recompute_maps()
print(self.out_size)
out = cv2.VideoWriter(outpath, cv2.VideoWriter_fourcc(*'mp4v'), fps, self.out_size)
# use framecount to prevent weird premature termination bug
frame_num = 0
while(cap.isOpened()):
ret, frame = cap.read()
frame_num += 1
if ret:
superview = self.apply_stretch(frame)
out.write(superview)
cv2.imshow('frame',superview)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
elif frame_num > num_frames:
break
cap.release()
out.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
nonlin = NonlinearStretch(out_size=(1280,720))
nonlin.set_safe_area(0.4)
nonlin.set_expo(1)
nonlin.stretch_save_video("PICT0053.AVI", "outfile.mp4")
# stretch testframe (4:3) to 16:8 using nonlinear stretch
#input_img = cv2.imread("testframe.png", cv2.IMREAD_COLOR)
# nonlin = NonlinearStretch(out_size=(1280,720))
# nonlin.set_in_size((input_img.shape[1], input_img.shape[0]))
# nonlin.set_safe_area(0.06)
# for i in range(0, 40):
# print("Heyo")
# nonlin.set_expo(i/10)
# nonlin.recompute_maps()
# out_img = nonlin.apply_stretch(input_img, True)
# print("Heyo2")
# cv2.imshow("img", out_img)
# cv2.waitKey(4)
# cv2.destroyAllWindows()