-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrsp_fuzzer.c
402 lines (341 loc) · 14 KB
/
rsp_fuzzer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#include <stdio.h>
#include <ftd2xx.h>
#include <log.h>
#include <stdbool.h>
#include <string.h>
#include <rsp_types.h>
#include <rsp_vector_instructions.h>
#include <rsp.h>
#define FUZZES_PER_INSTRUCTION 1000
static const bool verbose = false;
static unsigned int num_devices;
static FT_DEVICE_LIST_INFO_NODE* device_info;
static FT_HANDLE handle;
unsigned int bytes_written;
unsigned int bytes_read;
static rsp_t rsp;
typedef union flag_result {
struct {
half vcc;
half vco;
half vce;
half padding;
};
dword packed;
} flag_result_t;
static_assert(sizeof(flag_result_t) == sizeof(dword), "flag_result_t should be 64 bits");
typedef struct rsp_testable_instruction {
rspinstr_handler_t handler;
int funct;
const char* name;
bool random_vs;
} rsp_testable_instruction_t;
#define INSTR(_handler, _funct, _name, _random_vs) { .handler = _handler, .funct = _funct, .name = _name, .random_vs = _random_vs}
rsp_testable_instruction_t instrs[] = {
INSTR(rsp_vec_vabs, FUNCT_RSP_VEC_VABS, "vabs", false),
INSTR(rsp_vec_vadd, FUNCT_RSP_VEC_VADD, "vadd", false),
INSTR(rsp_vec_vaddc, FUNCT_RSP_VEC_VADDC, "vaddc", false),
INSTR(rsp_vec_vand, FUNCT_RSP_VEC_VAND, "vand", false),
INSTR(rsp_vec_vch, FUNCT_RSP_VEC_VCH, "vch", false),
INSTR(rsp_vec_vcl, FUNCT_RSP_VEC_VCL, "vcl", false),
INSTR(rsp_vec_vcr, FUNCT_RSP_VEC_VCR, "vcr", false),
INSTR(rsp_vec_veq, FUNCT_RSP_VEC_VEQ, "veq", false),
INSTR(rsp_vec_vge, FUNCT_RSP_VEC_VGE, "vge", false),
INSTR(rsp_vec_vlt, FUNCT_RSP_VEC_VLT, "vlt", false),
INSTR(rsp_vec_vmacf, FUNCT_RSP_VEC_VMACF, "vmacf", false),
// unimplemented
//INSTR(rsp_vec_vmacq, FUNCT_RSP_VEC_VMACQ, "vmacq", false),
INSTR(rsp_vec_vmacu, FUNCT_RSP_VEC_VMACU, "vmacu", false),
INSTR(rsp_vec_vmadh, FUNCT_RSP_VEC_VMADH, "vmadh", false),
INSTR(rsp_vec_vmadl, FUNCT_RSP_VEC_VMADL, "vmadl", false),
INSTR(rsp_vec_vmadm, FUNCT_RSP_VEC_VMADM, "vmadm", false),
INSTR(rsp_vec_vmadn, FUNCT_RSP_VEC_VMADN, "vmadn", false),
INSTR(rsp_vec_vmov, FUNCT_RSP_VEC_VMOV, "vmov", true),
INSTR(rsp_vec_vmrg, FUNCT_RSP_VEC_VMRG, "vmrg", false),
INSTR(rsp_vec_vmudh, FUNCT_RSP_VEC_VMUDH, "vmudh", false),
INSTR(rsp_vec_vmudl, FUNCT_RSP_VEC_VMUDL, "vmudl", false),
INSTR(rsp_vec_vmudm, FUNCT_RSP_VEC_VMUDM, "vmudm", false),
INSTR(rsp_vec_vmudn, FUNCT_RSP_VEC_VMUDN, "vmudn", false),
INSTR(rsp_vec_vmulf, FUNCT_RSP_VEC_VMULF, "vmulf", false),
// unimplemented
//INSTR(rsp_vec_vmulq, FUNCT_RSP_VEC_VMULQ, "vmulq", false),
INSTR(rsp_vec_vmulu, FUNCT_RSP_VEC_VMULU, "vmulu", false),
INSTR(rsp_vec_vnand, FUNCT_RSP_VEC_VNAND, "vnand", false),
INSTR(rsp_vec_vne, FUNCT_RSP_VEC_VNE, "vne", false),
INSTR(rsp_vec_vnop, FUNCT_RSP_VEC_VNOP, "vnop", false),
INSTR(rsp_vec_vnor, FUNCT_RSP_VEC_VNOR, "vnor", false),
INSTR(rsp_vec_vnxor, FUNCT_RSP_VEC_VNXOR, "vnxor", false),
INSTR(rsp_vec_vor, FUNCT_RSP_VEC_VOR, "vor", false),
INSTR(rsp_vec_vrcp, FUNCT_RSP_VEC_VRCP, "vrcp", true),
INSTR(rsp_vec_vrcph_vrsqh, FUNCT_RSP_VEC_VRCPH, "vrcph", true),
INSTR(rsp_vec_vrcph_vrsqh, FUNCT_RSP_VEC_VRSQH, "vrsqh", true),
INSTR(rsp_vec_vrcpl, FUNCT_RSP_VEC_VRCPL, "vrcpl", true),
// unimplemented
//INSTR(rsp_vec_vrndn, FUNCT_RSP_VEC_VRNDN, "vrndn", false),
// unimplemented
//INSTR(rsp_vec_vrndp, FUNCT_RSP_VEC_VRNDP, "vrndp", false),
INSTR(rsp_vec_vrsq, FUNCT_RSP_VEC_VRSQ, "vrsq", true),
INSTR(rsp_vec_vrsql, FUNCT_RSP_VEC_VRSQL, "vrsql", true),
INSTR(rsp_vec_vsar, FUNCT_RSP_VEC_VSAR, "vsar", false),
INSTR(rsp_vec_vsub, FUNCT_RSP_VEC_VSUB, "vsub", false),
INSTR(rsp_vec_vsubc, FUNCT_RSP_VEC_VSUBC, "vsubc", false),
INSTR(rsp_vec_vxor, FUNCT_RSP_VEC_VXOR, "vxor", false),
};
void assert_ftcommand(FT_STATUS result, const char* message) {
if (result != FT_OK) {
logdie("%s", message);
}
}
bool is_everdrive(unsigned int device) {
return (strcmp(device_info[device].Description, "FT245R USB FIFO") == 0 && device_info[device].ID == 0x04036001);
}
void send_vreg(vu_reg_t* reg) {
vu_reg_t swapped;
memcpy(&swapped, reg, sizeof(vu_reg_t));
for (int i = 0; i < 8; i++) {
swapped.elements[i] = htobe16(swapped.elements[i]);
}
assert_ftcommand(FT_Write(handle, &swapped, sizeof(vu_reg_t), &bytes_written), "Unable to write vu reg!");
}
void send_instruction(mips_instruction_t instr) {
word swapped = htobe32(instr.raw);
assert_ftcommand(FT_Write(handle, &swapped, sizeof(word), &bytes_written), "Unable to write instruction!");
}
void recv_vreg(vu_reg_t* reg) {
assert_ftcommand(FT_Read(handle, reg, sizeof(vu_reg_t), &bytes_read), "Unable to read vu reg!");
for (int i = 0; i < 8; i++) {
reg->elements[i] = be16toh(reg->elements[i]);
}
}
void recv_flag_result(flag_result_t* result) {
assert_ftcommand(FT_Read(handle, result, sizeof(flag_result_t), &bytes_read), "Unable to read flag_result!");
result->vcc = be16toh(result->vcc);
result->vco = be16toh(result->vco);
result->vce = be16toh(result->vce);
}
void init_everdrive(unsigned int device) {
// initialize
assert_ftcommand(FT_Open(device, &handle), "Unable to open device!");
assert_ftcommand(FT_ResetDevice(handle), "Unable to reset device!");
assert_ftcommand(FT_SetTimeouts(handle, 5000, 5000), "Unable to set timeouts!");
assert_ftcommand(FT_Purge(handle, FT_PURGE_RX | FT_PURGE_TX), "Unable to purge USB buffer contents!");
logalways("EverDrive-64 connection initialized");
}
void print_vureg_ln(vu_reg_t* reg) {
for (int i = 0; i < 8; i++) {
printf("%04X ", reg->elements[i]);
}
printf("\n");
}
bool compare_vureg(vu_reg_t* reg, vu_reg_t* compare) {
bool any_bad = false;
for (int i = 0; i < 8; i++) {
if (compare->elements[i] != reg->elements[i]) {
any_bad = true;
}
}
return any_bad;
}
void print_vureg_comparing_ln(vu_reg_t* reg, vu_reg_t* compare) {
for (int i = 0; i < 8; i++) {
if (compare->elements[i] != reg->elements[i]) {
printf(COLOR_RED);
}
printf("%04X ", reg->elements[i]);
if (compare->elements[i] != reg->elements[i]) {
printf(COLOR_END);
}
}
printf("\n");
}
void check_emu(rspinstr_handler_t handler, mips_instruction_t mipsinstr, vu_reg_t vs, vu_reg_t vt, int e, vu_reg_t* res, vu_reg_t* acc_h, vu_reg_t* acc_m, vu_reg_t* acc_l, flag_result_t* flag_result) {
for (int i = 0; i < 8; i++) {
rsp.vu_regs[1].elements[7 - i] = vs.elements[i];
rsp.vu_regs[2].elements[7 - i] = vt.elements[i];
}
mipsinstr.cp2_vec.e = e;
handler(&rsp, mipsinstr);
flag_result->vcc = rsp_get_vcc(&rsp);
flag_result->vco = rsp_get_vco(&rsp);
flag_result->vce = rsp_get_vce(&rsp);
for (int i = 0; i < 8; i++) {
res->elements[i] = rsp.vu_regs[3].elements[7 - i];
acc_h->elements[i] = rsp.acc.h.elements[7 - i];
acc_m->elements[i] = rsp.acc.m.elements[7 - i];
acc_l->elements[i] = rsp.acc.l.elements[7 - i];
}
}
half rand_half() {
return rand() & 0xFFFF;
}
mips_instruction_t vec_instr(int funct) {
int vs = 1;
int vt = 2;
int vd = 3;
if (funct != (funct & 0b111111)) {
logfatal("FUNCT would overflow!\n");
}
mips_instruction_t instr;
instr.raw = OPC_CP2 << 26 | 1 << 25 | vt << 16 | vs << 11 | vd << 6 | funct;
return instr;
}
void run_test(vu_reg_t vs, vu_reg_t vt, rsp_testable_instruction_t* instr) {
mips_instruction_t mipsinstr = vec_instr(instr->funct);
if (instr->random_vs) {
mipsinstr.cp2_vec.vs = rand() & 0b11111;
}
send_instruction(mipsinstr);
send_vreg(&vs);
send_vreg(&vt);
bool any_bad = false;
for (int element = 0; element < 16; element++) {
vu_reg_t res;
recv_vreg(&res);
vu_reg_t acc_h;
recv_vreg(&acc_h);
vu_reg_t acc_m;
recv_vreg(&acc_m);
vu_reg_t acc_l;
recv_vreg(&acc_l);
flag_result_t flag_result;
recv_flag_result(&flag_result);
vu_reg_t emu_res;
vu_reg_t emu_acc_h;
vu_reg_t emu_acc_m;
vu_reg_t emu_acc_l;
flag_result_t emu_flag_result;
check_emu(instr->handler, mipsinstr, vs, vt, element, &emu_res, &emu_acc_h, &emu_acc_m, &emu_acc_l, &emu_flag_result);
any_bad |= compare_vureg(&emu_res, &res);
any_bad |= compare_vureg(&emu_acc_h, &acc_h);
any_bad |= compare_vureg(&emu_acc_m, &acc_m);
any_bad |= compare_vureg(&emu_acc_l, &acc_l);
any_bad |= (flag_result.vco != emu_flag_result.vco);
any_bad |= (flag_result.vce != emu_flag_result.vce);
if (verbose || any_bad) {
printf("Testing %s element %d\n", instr->name, element);
printf("args:\n");
printf("vs: ");
print_vureg_ln(&vs);
printf("vt: ");
print_vureg_ln(&vt);
vu_reg_t vte = ext_get_vte(&vt, element);
printf("vt[%02d]: ", element);
print_vureg_ln(&vte);
printf("Result:\n");
printf("element %02d, n64 res: ", element);
print_vureg_ln(&res);
printf("element %02d, emu res: ", element);
print_vureg_comparing_ln(&emu_res, &res);
printf("element %02d, n64 acc_h: ", element);
print_vureg_ln(&acc_h);
printf("element %02d, emu acc_h: ", element);
print_vureg_comparing_ln(&emu_acc_h, &acc_h);
printf("element %02d, n64 acc_m: ", element);
print_vureg_ln(&acc_m);
printf("element %02d, emu acc_m: ", element);
print_vureg_comparing_ln(&emu_acc_m, &acc_m);
printf("element %02d, n64 acc_l: ", element);
print_vureg_ln(&acc_l);
printf("element %02d, emu acc_l: ", element);
print_vureg_comparing_ln(&emu_acc_l, &acc_l);
const char* color_start = (flag_result.vcc != emu_flag_result.vcc) ? COLOR_RED : "";
const char* color_end = (flag_result.vcc != emu_flag_result.vcc) ? COLOR_END : "";
printf("element %02d, n64 vcc: 0x%04X emu vcc: %s0x%04X%s\n", element, flag_result.vcc, color_start, emu_flag_result.vcc, color_end);
any_bad |= (flag_result.vcc != emu_flag_result.vcc);
color_start = (flag_result.vco != emu_flag_result.vco) ? COLOR_RED : "";
color_end = (flag_result.vco != emu_flag_result.vco) ? COLOR_END : "";
printf("element %02d, n64 vco: 0x%04X emu vco: %s0x%04X%s\n", element, flag_result.vco, color_start, emu_flag_result.vco, color_end);
color_start = (flag_result.vce != emu_flag_result.vce) ? COLOR_RED : "";
color_end = (flag_result.vce != emu_flag_result.vce) ? COLOR_END : "";
printf("element %02d, n64 vce: 0x%04X emu vce: %s0x%04X%s\n", element, flag_result.vce, color_start, emu_flag_result.vce, color_end);
printf("\n");
}
}
if (any_bad) {
logfatal("Data mismatch!");
}
}
void run_random_test(rsp_testable_instruction_t* instr) {
vu_reg_t vs;
vu_reg_t vt;
vs.elements[0] = rand_half();
vs.elements[1] = rand_half();
vs.elements[2] = rand_half();
vs.elements[3] = rand_half();
vs.elements[4] = rand_half();
vs.elements[5] = rand_half();
vs.elements[6] = rand_half();
vs.elements[7] = rand_half();
vt.elements[0] = rand_half();
vt.elements[1] = rand_half();
vt.elements[2] = rand_half();
vt.elements[3] = rand_half();
vt.elements[4] = rand_half();
vt.elements[5] = rand_half();
vt.elements[6] = rand_half();
vt.elements[7] = rand_half();
run_test(vs, vt, instr);
}
void init_state_from_hw(rsp_t* rsp) {
send_instruction(vec_instr(FUNCT_RSP_VEC_VNOP));
vu_reg_t zero;
memset(&zero, 0, sizeof(zero));
// Send blank args
send_vreg(&zero);
send_vreg(&zero);
vu_reg_t res;
vu_reg_t acc_h;
vu_reg_t acc_m;
vu_reg_t acc_l;
flag_result_t flag_result;
for (int element = 0; element < 16; element++) {
recv_vreg(&res);
recv_vreg(&acc_h);
recv_vreg(&acc_m);
recv_vreg(&acc_l);
recv_flag_result(&flag_result);
}
// Last set of results received will be the state of the hardware
for (int i = 0; i < 8; i++) {
rsp->vu_regs[3].elements[i] = res.elements[7 - i];
rsp->acc.h.elements[i] = acc_h.elements[7 - i];
rsp->acc.m.elements[i] = acc_m.elements[7 - i];
rsp->acc.l.elements[i] = acc_l.elements[7 - i];
}
rsp_set_vcc(rsp, flag_result.vcc);
rsp_set_vco(rsp, flag_result.vco);
rsp_set_vce(rsp, flag_result.vce);
logalways("Received initial state from hardware");
}
int main(int argc, char** argv) {
memset(&rsp, 0, sizeof(rsp_t));
srand(time(NULL));
if (FT_CreateDeviceInfoList(&num_devices) != FT_OK) {
logdie("Unable to enumerate num_devices. Try again?");
}
if (num_devices == 0) {
logdie("No devices found. Is your EverDrive plugged in?");
}
logalways("Found %d device%s.", num_devices, num_devices == 1 ? "" : "s");
device_info = malloc(sizeof(FT_DEVICE_LIST_INFO_NODE) * num_devices);
FT_GetDeviceInfoList(device_info, &num_devices);
int everdrive_index = -1;
for (int i = 0; i < num_devices && everdrive_index < 0; i++) {
if (is_everdrive(i)) {
everdrive_index = i;
}
}
if (everdrive_index < 0) {
logdie("Did not find an everdrive!\n");
}
init_everdrive(everdrive_index);
init_state_from_hw(&rsp);
while (true) {
for (int instr = 0; instr < (sizeof(instrs) / sizeof(rsp_testable_instruction_t)); instr++) {
logalways("Fuzzing %s %d times...", instrs[instr].name, FUZZES_PER_INSTRUCTION);
for (int test = 0; test < FUZZES_PER_INSTRUCTION; test++) {
run_random_test(&instrs[instr]);
}
}
}
}