forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pairwise.py
209 lines (166 loc) · 8.66 KB
/
train_pairwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import random
import time
from functools import partial
import numpy as np
import paddle
import pandas as pd
from data import convert_pairwise_example as convert_example
from data import create_dataloader
from model import PairwiseMatching
from tqdm import tqdm
from paddlenlp.data import Pad, Stack, Tuple
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import AutoModel, AutoTokenizer, LinearDecayWithWarmup
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--margin", default=0.2, type=float, help="Margin for pos_score and neg_score.")
parser.add_argument("--train_file", type=str, required=True, help="The full path of train file")
parser.add_argument("--test_file", type=str, required=True, help="The full path of test file")
parser.add_argument("--save_dir", default='./checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--epochs", default=3, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--eval_step", default=200, type=int, help="Step interval for evaluation.")
parser.add_argument('--save_step', default=10000, type=int, help="Step interval for saving checkpoint.")
parser.add_argument("--warmup_proportion", default=0.0, type=float, help="Linear warmup proportion over the training process.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument('--model_name_or_path', default="ernie-3.0-medium-zh", help="The pretrained model used for training")
parser.add_argument("--seed", type=int, default=1000, help="Random seed for initialization.")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
args = parser.parse_args()
# yapf: enable
def set_seed(seed):
"""sets random seed"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
@paddle.no_grad()
def evaluate(model, metric, data_loader, phase="dev"):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
"""
model.eval()
metric.reset()
for idx, batch in enumerate(data_loader):
input_ids, token_type_ids, labels = batch
pos_probs = model.predict(input_ids=input_ids, token_type_ids=token_type_ids)
neg_probs = 1.0 - pos_probs
preds = np.concatenate((neg_probs, pos_probs), axis=1)
metric.update(preds=preds, labels=labels)
print("eval_{} auc:{:.3}".format(phase, metric.accumulate()))
metric.reset()
model.train()
# 构建读取函数,读取原始数据
def read(src_path, is_predict=False):
data = pd.read_csv(src_path, sep="\t")
for index, row in tqdm(data.iterrows()):
query = row["query"]
title = row["title"]
neg_title = row["neg_title"]
yield {"query": query, "title": title, "neg_title": neg_title}
def read_test(src_path, is_predict=False):
data = pd.read_csv(src_path, sep="\t")
for index, row in tqdm(data.iterrows()):
query = row["query"]
title = row["title"]
label = row["label"]
yield {"query": query, "title": title, "label": label}
def do_train():
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args.seed)
train_ds = load_dataset(read, src_path=args.train_file, lazy=False)
dev_ds = load_dataset(read_test, src_path=args.test_file, lazy=False)
pretrained_model = AutoModel.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
trans_func_train = partial(convert_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length)
trans_func_eval = partial(convert_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length, phase="eval")
batchify_fn_train = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # pos_pair_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # pos_pair_segment
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # neg_pair_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # neg_pair_segment
): [data for data in fn(samples)]
batchify_fn_eval = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # pair_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # pair_segment
Stack(dtype="int64"), # label
): [data for data in fn(samples)]
train_data_loader = create_dataloader(
train_ds, mode="train", batch_size=args.batch_size, batchify_fn=batchify_fn_train, trans_fn=trans_func_train
)
dev_data_loader = create_dataloader(
dev_ds, mode="dev", batch_size=args.batch_size, batchify_fn=batchify_fn_eval, trans_fn=trans_func_eval
)
model = PairwiseMatching(pretrained_model, margin=args.margin)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
num_training_steps = len(train_data_loader) * args.epochs
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"])]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params,
)
metric = paddle.metric.Auc()
global_step = 0
tic_train = time.time()
for epoch in range(1, args.epochs + 1):
for step, batch in enumerate(train_data_loader, start=1):
pos_input_ids, pos_token_type_ids, neg_input_ids, neg_token_type_ids = batch
loss = model(
pos_input_ids=pos_input_ids,
neg_input_ids=neg_input_ids,
pos_token_type_ids=pos_token_type_ids,
neg_token_type_ids=neg_token_type_ids,
)
global_step += 1
if global_step % 10 == 0 and rank == 0:
print(
"global step %d, epoch: %d, batch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, step, loss, 10 / (time.time() - tic_train))
)
tic_train = time.time()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % args.eval_step == 0 and rank == 0:
evaluate(model, metric, dev_data_loader, "dev")
if global_step % args.save_step == 0 and rank == 0:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_param_path = os.path.join(save_dir, "model_state.pdparams")
paddle.save(model.state_dict(), save_param_path)
tokenizer.save_pretrained(save_dir)
if __name__ == "__main__":
do_train()