Skip to content

Latest commit

 

History

History
184 lines (158 loc) · 29.1 KB

MODEL_ZOO.md

File metadata and controls

184 lines (158 loc) · 29.1 KB

Model Zoo

OpenSelfSup needs your contribution! Since we don't have sufficient GPUs to run these large-scale experiments, your contributions, including parameter studies, reproducing of results, implementing new methods, etc, are essential to make OpenSelfSup better. Your contribution will be recorded in the below table, top contributors will be included in the author list of OpenSelfSup!

Pre-trained model download links and speed test.

Note

  • If not specifically indicated, the testing GPUs are NVIDIA Tesla V100.
  • The table records the implementors who implemented the methods (either by themselves or refactoring from other repos), and the experimenters who performed experiments and reproduced the results. The experimenters should be responsible for the evaluation results on all the benchmarks, and the implementors should be responsible for the implementation as well as the results; If the experimenter is not indicated, an implementator is the experimenter by default.
Method (Implementator)Config (Experimenter)RemarksDownload linkBatch sizeEpochs
ImageNet-torchvisionimagenet_r50-21352794.pth--
Random-kaimingrandom_r50-5d0fa71b.pth--
Relative-Loc (@Jiahao000)selfsup/relative_loc/r50.pydefaultrelative_loc_r50-342c9097.pth51270
Rotation-Pred (@XiaohangZhan)selfsup/rotation_pred/r50.pydefaultrotation_r50-cfab8ebb.pth12870
DeepCluster (@XiaohangZhan)selfsup/deepcluster/r50.pydefaultdeepcluster_r50-bb8681e2.pth512200
NPID (@XiaohangZhan)selfsup/npid/r50.pydefaultnpid_r50-dec3df0c.pth256200
selfsup/npid/r50_ensure_neg.pyensure_neg=Truenpid_r50_ensure_neg-ce09b7ae.pth
ODC (@XiaohangZhan)selfsup/odc/r50_v1.py (@Jiahao000)defaultodc_r50_v1-5af5dd0c.pth512440
MoCo (@XiaohangZhan)selfsup/moco/r50_v1.pydefaultmoco_r50_v1-4ad89b5c.pth256200
MoCo v2 (@XiaohangZhan)selfsup/moco/r50_v2.pydefaultmoco_r50_v2-e3b0c442.pth256200
SimCLR (@XiaohangZhan)selfsup/simclr/r50_bs256_ep200.pydefaultsimclr_r50_bs256_ep200-4577e9a6.pth256200
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 necksimclr_r50_bs256_ep200_mocov2_neck-0d6e5ff2.pth
BYOL (@XiaohangZhan)selfsup/byol/r50_bs256_accumulate16_ep300.py (@scnuhealthy)defaultbyol_r50_bs256_accmulate16_ep300-5df46722.pth256300
selfsup/byol/r50_bs2048_accumulate2_ep200_fp16.py (@xieenze)defaultbyol_r50_bs2048_accmulate2_ep200-e3b0c442.pth2048200

Benchmarks

VOC07 SVM & SVM Low-shot

MethodConfigRemarksBest layerVOC07 SVMVOC07 SVM Low-shot
124816326496
ImageNet-torchvisionfeat587.1752.9963.5573.778.7981.7683.7585.1885.97
Random-kaimingfeat230.549.159.3911.0912.314.317.4121.3223.77
Relative-Locselfsup/relative_loc/r50.pydefaultfeat464.7818.1722.0829.3735.5841.848.7355.5558.33
Rotation-Predselfsup/rotation_pred/r50.pydefaultfeat467.3818.9123.3330.5738.2245.8352.2358.0861.11
DeepClusterselfsup/deepcluster/r50.pydefaultfeat574.2629.7337.6645.8555.5762.4866.1570.071.37
NPIDselfsup/npid/r50.pydefaultfeat574.5024.1931.2439.6950.9959.0364.468.6970.84
selfsup/npid/r50_ensure_neg.pyensure_neg=Truefeat575.70
ODCselfsup/odc/r50_v1.pydefaultfeat578.4232.4240.2749.9559.9665.7169.9973.6475.13
MoCoselfsup/moco/r50_v1.pydefaultfeat579.1830.0337.7347.6458.7866.070.674.676.07
MoCo v2selfsup/moco/r50_v2.pydefaultfeat584.2643.052.4863.4371.7476.3578.981.3182.45
SimCLRselfsup/simclr/r50_bs256_ep200.pydefaultfeat578.9532.4540.7650.459.0165.4570.1373.5875.35
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 neckfeat577.65
BYOLselfsup/byol/r50_bs256_accumulate16_ep300.pydefaultfeat586.58
selfsup/byol/r50_bs2048_accumulate2_ep200_fp16.pydefaultfeat585.86

ImageNet Linear Classification

Note

  • Config: configs/benchmarks/linear_classification/imagenet/r50_multihead.py for ImageNet (Multi) and configs/benchmarks/linear_classification/imagenet/r50_last.py for ImageNet (Last).
  • For DeepCluster, use the corresponding one with _sobel.
  • ImageNet (Multi) evaluates features in around 9k dimensions from different layers. Top-1 result of the last epoch is reported.
  • ImageNet (Last) evaluates the last feature after global average pooling, e.g., 2048 dimensions for resnet50. The best top-1 result among all epochs is reported.
  • Usually, we report the best result from ImageNet (Multi) and ImageNet (Last) to ensure fairness, since different methods achieve their best performance on different layers.
MethodConfigRemarksImageNet (Multi)ImageNet (Last)
feat1feat2feat3feat4feat5avgpool
ImageNet-torchvision15.1833.9647.8667.5676.1774.12
Random-kaiming11.3716.2113.479.076.544.35
Relative-Locselfsup/relative_loc/r50.pydefault14.7631.2945.7749.3140.2038.83
Rotation-Predselfsup/rotation_pred/r50.pydefault12.8934.3044.9154.9949.0947.01
DeepClusterselfsup/deepcluster/r50.pydefault12.7830.8143.8857.7151.6846.92
NPIDselfsup/npid/r50.pydefault14.2831.2040.6854.4656.6156.60
ODCselfsup/odc/r50_v1.pydefault14.7631.8242.4455.7657.7053.42
MoCoselfsup/moco/r50_v1.pydefault15.3233.0844.6857.2760.6061.02
MoCo v2selfsup/moco/r50_v2.pydefault14.7432.8144.9561.6166.7367.69
SimCLRselfsup/simclr/r50_bs256_ep200.pydefault17.0931.3741.3854.3561.5760.06
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 neck16.9731.8841.7354.3359.9458.00
BYOLselfsup/byol/r50_bs256_accumulate16_ep300.pydefault14.0734.4447.2263.0872.35
selfsup/byol/r50_bs2048_accumulate2_ep200_fp16.pydefault15.5234.5047.2262.7871.61

Places205 Linear Classification

Note

  • Config: configs/benchmarks/linear_classification/places205/r50_multihead.py.
  • For DeepCluster, use the corresponding one with _sobel.
  • Places205 evaluates features in around 9k dimensions from different layers. Top-1 result of the last epoch is reported.
MethodConfigRemarksPlaces205
feat1feat2feat3feat4feat5
ImageNet-torchvision21.2736.1043.0351.3853.05
Random-kaiming17.1921.7019.2314.5911.73
Relative-Locselfsup/relative_loc/r50.pydefault21.0734.8642.8445.7141.45
Rotation-Predselfsup/rotation_pred/r50.pydefault18.6535.7142.2845.9843.72
DeepClusterselfsup/deepcluster/r50.pydefault18.8033.9341.4447.2242.61
NPIDselfsup/npid/r50.pydefault20.5334.0340.4847.1347.73
ODCselfsup/odc/r50_v1.pydefault20.9434.7841.1947.4549.18
MoCoselfsup/moco/r50_v1.pydefault21.1335.1942.4048.7850.70
MoCo v2selfsup/moco/r50_v2.pydefault21.8835.7543.6549.9952.57
SimCLRselfsup/simclr/r50_bs256_ep200.pydefault22.5534.1440.3547.1551.64
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 neck

ImageNet Semi-Supervised Classification

Note

  • In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear classification head. All parameters are fine-tuned.
  • Config: under configs/benchmarks/semi_classification/imagenet_1percent/ for 1% data, and configs/benchmarks/semi_classification/imagenet_10percent/ for 10% data.
  • When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the performance. Hence, we prepare a list of settings with the base learning rate from {0.001, 0.01, 0.1} and the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each method.
  • Please use --deterministic in this benchmark.
MethodConfigRemarksOptimal setting for ImageNet 1%ImageNet 1%
top-1top-5
ImageNet-torchvisionr50_lr0_001_head100.py68.6888.87
Random-kaimingr50_lr0_01_head1.py1.564.99
Relative-Locselfsup/relative_loc/r50.pydefaultr50_lr0_01_head100.py16.4840.37
Rotation-Predselfsup/rotation_pred/r50.pydefaultr50_lr0_01_head100.py18.9844.05
DeepClusterselfsup/deepcluster/r50.pydefaultr50_lr0_01_head1_sobel.py33.4458.62
NPIDselfsup/npid/r50.pydefaultr50_lr0_01_head100.py27.9554.37
ODCselfsup/odc/r50_v1.pydefaultr50_lr0_1_head100.py32.3961.02
MoCoselfsup/moco/r50_v1.pydefaultr50_lr0_01_head100.py33.1561.30
MoCo v2selfsup/moco/r50_v2.pydefaultr50_lr0_01_head100.py39.0768.31
SimCLRselfsup/simclr/r50_bs256_ep200.pydefaultr50_lr0_01_head100.py36.0964.50
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 neckr50_lr0_01_head100.py36.3164.68
MethodConfigRemarksOptimal setting for ImageNet 10%ImageNet 10%
top-1top-5
ImageNet-torchvisionr50_lr0_001_head10.py74.5392.19
Random-kaimingr50_lr0_01_head1.py21.7844.24
Relative-Locselfsup/relative_loc/r50.pydefaultr50_lr0_01_head100.py53.8679.62
Rotation-Predselfsup/rotation_pred/r50.pydefaultr50_lr0_01_head100.py54.7580.21
DeepClusterselfsup/deepcluster/r50.pydefaultr50_lr0_01_head1_sobel.py52.9477.96
NPIDselfsup/npid/r50.pydefaultr50_lr0_01_head100.py57.2281.39
ODCselfsup/odc/r50_v1.pydefaultr50_lr0_1_head10.py58.1582.55
MoCoselfsup/moco/r50_v1.pydefaultr50_lr0_01_head100.py60.0884.02
MoCo v2selfsup/moco/r50_v2.pydefaultr50_lr0_01_head100.py61.8085.11
SimCLRselfsup/simclr/r50_bs256_ep200.pydefaultr50_lr0_01_head100.py58.4682.60
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 neckr50_lr0_01_head100.py58.3882.53

PASCAL VOC07+12 Object Detection

Note

  • This benchmark follows the evluation protocols set up by MoCo.
  • Config: benchmarks/detection/configs/pascal_voc_R_50_C4_24k_moco.yaml.
  • Please follow here to run the evaluation.
MethodConfigRemarksVOC07+12
AP50APAP75
ImageNet-torchvision81.5854.1959.80
Random-kaiming59.0232.8331.60
Relative-Locselfsup/relative_loc/r50.pydefault80.3655.1361.18
Rotation-Predselfsup/rotation_pred/r50.pydefault80.9155.5261.39
NPIDselfsup/npid/r50.pydefault80.0354.1159.50
MoCoselfsup/moco/r50_v1.pydefault81.3855.9562.23
MoCo v2selfsup/moco/r50_v2.pydefault82.2456.9763.43
SimCLRselfsup/simclr/r50_bs256_ep200.pydefault79.4151.5455.63
BYOLselfsup/byol/r50_bs2048_accumulate2_ep200_fp16.pydefault79.6049.0052.80

COCO2017 Object Detection

Note

  • This benchmark follows the evluation protocols set up by MoCo.
  • Config: benchmarks/detection/configs/coco_R_50_C4_2x_moco.yaml.
  • Please follow here to run the evaluation.
MethodConfigRemarksCOCO2017
AP50(Box)AP(Box)AP75(Box)AP50(Mask)AP(Mask)AP75(Mask)
ImageNet-torchvision59.940.043.156.534.736.9
Random-kaiming54.635.638.251.531.433.5
Relative-Locselfsup/relative_loc/r50.pydefault59.640.043.556.535.037.3
Rotation-Predselfsup/rotation_pred/r50.pydefault59.340.043.656.034.937.4
NPIDselfsup/npid/r50.pydefault59.039.442.855.934.536.6
MoCoselfsup/moco/r50_v1.pydefault60.540.944.257.135.537.7
MoCo v2selfsup/moco/r50_v2.pydefault60.641.044.557.235.638.0
SimCLRselfsup/simclr/r50_bs256_ep200.pydefault59.139.642.955.934.637.1
BYOLselfsup/byol/r50_bs2048_accumulate2_ep200_fp16.pydefault60.640.243.357.034.936.7