diff --git a/rl_games/algos_torch/network_builder.py b/rl_games/algos_torch/network_builder.py index 4600f016..284b0305 100644 --- a/rl_games/algos_torch/network_builder.py +++ b/rl_games/algos_torch/network_builder.py @@ -1181,21 +1181,17 @@ def __init__(self, params, **kwargs): def forward(self, obs_dict): if self.proprio_size > 0: - obs = obs_dict['camera'] - proprio = obs_dict['proprio'] + obs = obs_dict['obs']['camera'] + proprio = obs_dict['obs']['proprio'] else: obs = obs_dict['obs'] - # print('obs.shape: ', obs.shape) if self.permute_input: obs = obs.permute((0, 3, 1, 2)) if self.preprocess_image: obs = preprocess_image(obs) - # Assuming your input image is a tensor or PIL image, resize it to 224x224 - #obs = self.resize_transform(obs) - dones = obs_dict.get('dones', None) bptt_len = obs_dict.get('bptt_len', 0) states = obs_dict.get('rnn_states', None) @@ -1203,7 +1199,6 @@ def forward(self, obs_dict): out = obs out = self.cnn(out) out = out.flatten(1) - out = self.flatten_act(out) if self.proprio_size > 0: @@ -1298,9 +1293,9 @@ def _build_backbone(self, input_shape, backbone_params): # TODO: add low-res parameter backbone.conv1 = nn.Conv2d(input_shape[0], 64, kernel_size=3, stride=1, padding=1, bias=False) - #backbone.maxpool = nn.Identity() + # backbone.maxpool = nn.Identity() # if input_shape[0] != 3: - # model.conv1 = nn.Conv2d(input_shape[0], 64, kernel_size=7, stride=2, padding=3, bias=False) + # backbone.conv1 = nn.Conv2d(input_shape[0], 64, kernel_size=7, stride=2, padding=3, bias=False) # Remove the fully connected layer backbone_output_size = backbone.fc.in_features print('backbone_output_size: ', backbone_output_size)