Skip to content

Commit

Permalink
WIP: network with different vision backbones.
Browse files Browse the repository at this point in the history
  • Loading branch information
ViktorM committed Aug 18, 2024
1 parent 637d2bc commit 0dc5b43
Show file tree
Hide file tree
Showing 3 changed files with 253 additions and 15 deletions.
4 changes: 2 additions & 2 deletions rl_games/algos_torch/model_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ def __init__(self):
lambda **kwargs: network_builder.A2CResnetBuilder())
self.network_factory.register_builder('vision_actor_critic',
lambda **kwargs: network_builder.A2CVisionBuilder())
# self.network_factory.register_builder('e2e_vision_actor_critic',
# lambda **kwargs: vision_networks.A2CVisionBackboneBuilder())
self.network_factory.register_builder('e2e_vision_actor_critic',
lambda **kwargs: network_builder.VisionBackboneBuilder())

self.network_factory.register_builder('rnd_curiosity', lambda **kwargs: network_builder.RNDCuriosityBuilder())
self.network_factory.register_builder('soft_actor_critic', lambda **kwargs: network_builder.SACBuilder())
Expand Down
233 changes: 231 additions & 2 deletions rl_games/algos_torch/network_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -871,8 +871,6 @@ def __init__(self, params, **kwargs):
self.num_seqs = kwargs.pop('num_seqs', 1)
self.value_size = kwargs.pop('value_size', 1)

print(params)

NetworkBuilder.BaseNetwork.__init__(self)
self.load(params)
if self.permute_input:
Expand Down Expand Up @@ -1074,6 +1072,237 @@ def build(self, name, **kwargs):
return net


from torchvision import models
from timm import create_model # timm is required for ConvNeXt and ViT

class VisionBackboneBuilder(NetworkBuilder):
def __init__(self, **kwargs):
NetworkBuilder.__init__(self)

def load(self, params):
self.params = params

class Network(NetworkBuilder.BaseNetwork):
def __init__(self, params, **kwargs):
self.actions_num = kwargs.pop('actions_num')
full_input_shape = kwargs.pop('input_shape')

self.proprio_size = 0 # Number of proprioceptive features
if isinstance(full_input_shape, dict):
input_shape = full_input_shape['camera']
proprio_shape = full_input_shape['proprio']
self.proprio_size = proprio_shape[0]
else:
input_shape = full_input_shape

self.num_seqs = kwargs.pop('num_seqs', 1)
self.value_size = kwargs.pop('value_size', 1)

NetworkBuilder.BaseNetwork.__init__(self)
self.load(params)
if self.permute_input:
input_shape = torch_ext.shape_whc_to_cwh(input_shape)

self.cnn = self._build_backbone(input_shape, self.params['backbone'])
cnn_output_size = self.cnn_output_size

mlp_input_size = cnn_output_size + self.proprio_size
if len(self.units) == 0:
out_size = cnn_output_size
else:
out_size = self.units[-1]

if self.has_rnn:
if not self.is_rnn_before_mlp:
rnn_in_size = out_size
out_size = self.rnn_units
else:
rnn_in_size = mlp_input_size
mlp_input_size = self.rnn_units

self.rnn = self._build_rnn(self.rnn_name, rnn_in_size, self.rnn_units, self.rnn_layers)
self.layer_norm = torch.nn.LayerNorm(self.rnn_units)

mlp_args = {
'input_size': mlp_input_size,
'units': self.units,
'activation': self.activation,
'norm_func_name': self.normalization,
'dense_func': torch.nn.Linear
}

self.mlp = self._build_mlp(**mlp_args)

self.value = self._build_value_layer(out_size, self.value_size)
self.value_act = self.activations_factory.create(self.value_activation)
self.flatten_act = self.activations_factory.create(self.activation)

if self.is_discrete:
self.logits = torch.nn.Linear(out_size, self.actions_num)
if self.is_continuous:
self.mu = torch.nn.Linear(out_size, self.actions_num)
self.mu_act = self.activations_factory.create(self.space_config['mu_activation'])
mu_init = self.init_factory.create(**self.space_config['mu_init'])
self.sigma_act = self.activations_factory.create(self.space_config['sigma_activation'])
sigma_init = self.init_factory.create(**self.space_config['sigma_init'])

if self.fixed_sigma:
self.sigma = nn.Parameter(torch.zeros(self.actions_num, requires_grad=True, dtype=torch.float32), requires_grad=True)
else:
self.sigma = torch.nn.Linear(out_size, self.actions_num)

mlp_init = self.init_factory.create(**self.initializer)

# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
for m in self.mlp:
if isinstance(m, nn.Linear):
mlp_init(m.weight)

if self.is_discrete:
mlp_init(self.logits.weight)
if self.is_continuous:
mu_init(self.mu.weight)
if self.fixed_sigma:
sigma_init(self.sigma)
else:
sigma_init(self.sigma.weight)

mlp_init(self.value.weight)

def forward(self, obs_dict):
if self.proprio_size > 0:
obs = obs_dict['camera']
proprio = obs_dict['proprio']
else:
obs = obs_dict['obs']
if self.permute_input:
obs = obs.permute((0, 3, 1, 2))

dones = obs_dict.get('dones', None)
bptt_len = obs_dict.get('bptt_len', 0)
states = obs_dict.get('rnn_states', None)

out = obs
out = self.cnn(out)
out = out.flatten(1)
out = self.flatten_act(out)

if self.proprio_size > 0:
out = torch.cat([out, proprio], dim=1)

if self.has_rnn:
seq_length = obs_dict.get('seq_length', 1)

out_in = out
if not self.is_rnn_before_mlp:
out_in = out
out = self.mlp(out)

batch_size = out.size()[0]
num_seqs = batch_size // seq_length
out = out.reshape(num_seqs, seq_length, -1)

if len(states) == 1:
states = states[0]

out = out.transpose(0, 1)
if dones is not None:
dones = dones.reshape(num_seqs, seq_length, -1)
dones = dones.transpose(0, 1)
out, states = self.rnn(out, states, dones, bptt_len)
out = out.transpose(0, 1)
out = out.contiguous().reshape(out.size()[0] * out.size()[1], -1)

if self.rnn_ln:
out = self.layer_norm(out)
if self.is_rnn_before_mlp:
out = self.mlp(out)
if not isinstance(states, tuple):
states = (states,)
else:
out = self.mlp(out)

value = self.value_act(self.value(out))

if self.is_discrete:
logits = self.logits(out)
return logits, value, states

if self.is_continuous:
mu = self.mu_act(self.mu(out))
if self.fixed_sigma:
sigma = self.sigma_act(self.sigma)
else:
sigma = self.sigma_act(self.sigma(out))
return mu, mu * 0 + sigma, value, states

def load(self, params):
self.separate = False
self.units = params['mlp']['units']
self.activation = params['mlp']['activation']
self.initializer = params['mlp']['initializer']
self.is_discrete = 'discrete' in params['space']
self.is_continuous = 'continuous' in params['space']
self.is_multi_discrete = 'multi_discrete' in params['space']
self.value_activation = params.get('value_activation', 'None')
self.normalization = params.get('normalization', None)

if self.is_continuous:
self.space_config = params['space']['continuous']
self.fixed_sigma = self.space_config['fixed_sigma']
elif self.is_discrete:
self.space_config = params['space']['discrete']
elif self.is_multi_discrete:
self.space_config = params['space']['multi_discrete']

self.has_rnn = 'rnn' in params
if self.has_rnn:
self.rnn_units = params['rnn']['units']
self.rnn_layers = params['rnn']['layers']
self.rnn_name = params['rnn']['name']
self.is_rnn_before_mlp = params['rnn'].get('before_mlp', False)
self.rnn_ln = params['rnn'].get('layer_norm', False)

self.has_cnn = True
self.permute_input = params['backbone'].get('permute_input', True)
self.require_rewards = params.get('require_rewards')
self.require_last_actions = params.get('require_last_actions')

def _build_backbone(self, input_shape, backbone_params):
print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")
print(backbone_params)
backbone_type = backbone_params['type']
pretrained = backbone_params.get('pretrained', False)

if backbone_type == 'resnet18':
model = models.resnet18(pretrained=pretrained)
# Modify the first convolution layer to match input shape if needed
if input_shape[0] != 3:
model.conv1 = nn.Conv2d(input_shape[0], 64, kernel_size=7, stride=2, padding=3, bias=False)
# Remove the fully connected layer
self.cnn_output_size = model.fc.in_features
model = nn.Sequential(*list(model.children())[:-1])
elif backbone_type == 'convnext_tiny':
model = create_model('convnext_tiny', pretrained=pretrained)
# Remove the fully connected layer
self.cnn_output_size = model.head.fc.in_features
model = nn.Sequential(*list(model.children())[:-1])
# elif backbone_type == 'vit_tiny_patch16_224':
# model = create_model('vit_tiny_patch16_224', pretrained=pretrained)
# # ViT outputs a single token, so no need to remove layers
# self.cnn_output
else:
raise ValueError(f'Unknown backbone type: {backbone_type}')

return model

def build(self, name, **kwargs):
net = VisionBackboneBuilder.Network(self.params, **kwargs)
return net


class DiagGaussianActor(NetworkBuilder.BaseNetwork):
"""torch.distributions implementation of an diagonal Gaussian policy."""
def __init__(self, output_dim, log_std_bounds, **mlp_args):
Expand Down
31 changes: 20 additions & 11 deletions rl_games/networks/vision_networks.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,11 +242,12 @@ class Network(NetworkBuilder.BaseNetwork):
def __init__(self, params, **kwargs):
self.actions_num = kwargs.pop('actions_num')
full_input_shape = kwargs.pop('input_shape')
proprio_size = 0 # Number of proprioceptive features

self.proprio_size = 0 # Number of proprioceptive features
if isinstance(full_input_shape, dict):
input_shape = full_input_shape['camera']
proprio_shape = full_input_shape['proprio']
proprio_size = proprio_shape[0]
self.proprio_size = proprio_shape[0]
else:
input_shape = full_input_shape

Expand All @@ -261,7 +262,7 @@ def __init__(self, params, **kwargs):
self.cnn = self._build_backbone(input_shape, self.params['backbone'])
cnn_output_size = self.cnn_output_size

mlp_input_size = cnn_output_size + proprio_size
mlp_input_size = cnn_output_size + self.proprio_size
if len(self.units) == 0:
out_size = cnn_output_size
else:
Expand Down Expand Up @@ -308,9 +309,9 @@ def __init__(self, params, **kwargs):

mlp_init = self.init_factory.create(**self.initializer)

for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
for m in self.mlp:
if isinstance(m, nn.Linear):
mlp_init(m.weight)
Expand All @@ -327,8 +328,11 @@ def __init__(self, params, **kwargs):
mlp_init(self.value.weight)

def forward(self, obs_dict):
obs = obs_dict['camera']
proprio = obs_dict['proprio']
if self.proprio_size > 0:
obs = obs_dict['camera']
proprio = obs_dict['proprio']
else:
obs = obs_dict['obs']
if self.permute_input:
obs = obs.permute((0, 3, 1, 2))

Expand All @@ -341,7 +345,8 @@ def forward(self, obs_dict):
out = out.flatten(1)
out = self.flatten_act(out)

out = torch.cat([out, proprio], dim=1)
if self.proprio_size > 0:
out = torch.cat([out, proprio], dim=1)

if self.has_rnn:
seq_length = obs_dict.get('seq_length', 1)
Expand Down Expand Up @@ -417,7 +422,7 @@ def load(self, params):
self.rnn_ln = params['rnn'].get('layer_norm', False)

self.has_cnn = True
self.permute_input = params['cnn'].get('permute_input', True)
self.permute_input = params['backbone'].get('permute_input', True)
self.require_rewards = params.get('require_rewards')
self.require_last_actions = params.get('require_last_actions')

Expand All @@ -441,4 +446,8 @@ def _build_backbone(self, input_shape, backbone_params):
elif backbone_type == 'vit_tiny_patch16_224':
model = create_model('vit_tiny_patch16_224', pretrained=pretrained)
# ViT outputs a single token, so no need to remove layers
self.cnn_output
self.cnn_output

def build(self, name, **kwargs):
net = VisionBackboneBuilder.Network(self.params, **kwargs)
return net

0 comments on commit 0dc5b43

Please sign in to comment.