-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
148 lines (119 loc) · 5.23 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import os.path as osp
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
from sklearn import metrics
import torch
from dataset import create_data_loader, preprocess_df
from model import ClassificationModel
from utils import set_seeds, load_config, str2bool
def inference(model, test_loader, device, cls_last_sigmoid):
model.eval()
preds = []
with torch.no_grad():
for img, tab in tqdm(iter(test_loader)):
img = img.float().to(device)
tab = tab.float().to(device)
model_pred = model(img, tab)
if not cls_last_sigmoid:
model_pred = torch.sigmoid(model_pred)
model_pred = model_pred.squeeze(1).to('cpu')
preds += model_pred.tolist()
return preds
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--df', type=str, default='test')
parser.add_argument('--mode', type=str, default='test') # test hard valid
parser.add_argument('--hflip', action='store_true')
parser.add_argument('--vflip', action='store_true')
parser.add_argument('--ckpt_list', nargs='+') # exp0/best.pt
parser.add_argument('--img_size', type=int, default=512)
parser.add_argument('--resize_by_split', action='store_true')
parser.add_argument('--transform_type', type=str, default='resize')
parser.add_argument('--pred_thres', type=float, default=0.5)
parser.add_argument('--remark', type=str, default='')
args = parser.parse_args()
if args.mode == 'valid':
assert args.df in ['train', 'train_5fold', 'train_heuristic_5fold']
else:
assert args.df in ['test', 'test_heuristic']
args.base_dir = './'
args.data_dir = osp.join(args.base_dir, 'data')
args.submit_dir = osp.join(args.base_dir, 'submit')
os.makedirs(args.submit_dir, exist_ok=True)
return args
def main(args, train_args, hflip=False, vflip=False):
args.device = torch.device("cuda:0")
df = pd.read_csv(osp.join(args.data_dir, f'{args.df}.csv'))
if args.mode == 'valid':
df = preprocess_df(df, train_args.df_ver, drop_row=True)
df = df[df["kfold"] == train_args.fold].reset_index(drop=True)
else:
df = preprocess_df(df, train_args.df_ver, drop_row=False)
test_loader = create_data_loader(
df, 'infer', args.img_size, data_dir=args.data_dir,
hflip=hflip, vflip=vflip, norm_type=train_args.norm_type,
transform_type=args.transform_type, resize_by_split=args.resize_by_split,
)
# exp235
# args.tab_model = 'drop40'
model = ClassificationModel(train_args).to(args.device)
model.load_state_dict(torch.load(osp.join(args.work_dir, args.ckpt)))
preds = inference(model, test_loader, args.device, train_args.cls_last_sigmoid)
if args.mode in ['valid', 'hard']:
preds = np.where(np.array(preds) > args.pred_thres, 1, 0)
if args.mode == 'valid':
labels = df[df['kfold'] == train_args.fold]['N_category'].tolist()
valid_f1 = metrics.f1_score(y_true=labels, y_pred=preds, average='macro', zero_division=1)
print(f'hflip={bool(hflip)} vflip={bool(vflip)} valid_f1:{valid_f1:.4f}')
return preds
if __name__ == '__main__':
args = get_parser()
submit_file_name = args.mode
if args.hflip:
submit_file_name += '_hflip'
if args.vflip:
submit_file_name += '_vflip'
if args.resize_by_split:
submit_file_name += '_resizeBySplit'
if args.transform_type != 'resize':
submit_file_name += f'_{args.transform_type}'
if args.img_size != 512:
submit_file_name += f'_img{args.img_size}'
if args.remark != '':
submit_file_name += f'_{args.remark}'
# preds
ensemble = []
ensemble_cnt = 0
for idx in range(len(args.ckpt_list)):
args.exp, args.ckpt = args.ckpt_list[idx].split('/')
args.work_dir = osp.join('work_dirs', args.exp) # work_dirs/exp0
submit_file_name += f'_{args.exp}'
if args.ckpt.split('.')[0] != 'best':
submit_file_name += args.ckpt.split('.')[0]
set_seeds(args.seed)
train_args = load_config(osp.join(args.work_dir, 'config.yaml'))
for hflip in range(args.hflip + 1):
for vflip in range(args.vflip + 1):
preds = main(args, train_args, hflip, vflip)
ensemble.append(preds)
ensemble_cnt += 1
if args.mode in ['test', 'hard']:
# ensemble
if args.mode == 'hard':
ensemble = np.array(ensemble)
preds = [np.argmax(np.bincount(ensemble[:,i])) for i in range(ensemble.shape[1])]
elif args.mode == 'test':
if ensemble_cnt > 1:
ensemble = np.sum(ensemble, axis=0)
elif ensemble_cnt == 1:
ensemble = ensemble[0]
preds = np.where(ensemble > args.pred_thres * ensemble_cnt, 1, 0)
# output
submit = pd.read_csv(osp.join(args.data_dir, 'sample_submission.csv'))
submit['N_category'] = preds
submit_path = osp.join(args.submit_dir, f'{submit_file_name}.csv')
submit.to_csv(submit_path, index=False)