From d88e80f4658065ac987aa245233036d8fa281322 Mon Sep 17 00:00:00 2001 From: Jogima-cyber Date: Sun, 6 Nov 2022 14:32:01 +0000 Subject: [PATCH 1/3] Adding multidiscrete config attribute --- config.yaml | 3 +-- handyrl/train.py | 8 ++++++++ 2 files changed, 9 insertions(+), 2 deletions(-) diff --git a/config.yaml b/config.yaml index 2bf65d85..e9443f9a 100755 --- a/config.yaml +++ b/config.yaml @@ -1,6 +1,6 @@ - env_args: env: 'TicTacToe' + multidiscrete: True #env: 'Geister' #env: 'HungryGeese' #env: 'handyrl.envs.parallel_tictactoe' # specify by path @@ -35,4 +35,3 @@ train_args: worker_args: server_address: '' num_parallel: 8 - diff --git a/handyrl/train.py b/handyrl/train.py index fe8ac0d4..b6c01cd9 100755 --- a/handyrl/train.py +++ b/handyrl/train.py @@ -396,6 +396,10 @@ class Learner: def __init__(self, args, net=None, remote=False): train_args = args['train_args'] env_args = args['env_args'] + + if not "multidiscrete" in env_args: + env_args["multidiscrete"] = False + train_args['env'] = env_args args = train_args @@ -411,6 +415,10 @@ def __init__(self, args, net=None, remote=False): # trained datum self.model_epoch = self.args['restart_epoch'] self.model = net if net is not None else self.env.net() + + if env_args["multidiscrete"] and not hasattr(self.model, "nvec"): + raise Exception("multidiscrete argument set to True but model has no nvec attribute set. Please set nvec in your model in the format [nb of actions of first indepent action set, nb of actions in second indepent action set, ...]") + if self.model_epoch > 0: self.model.load_state_dict(torch.load(self.model_path(self.model_epoch)), strict=False) From d4333c9d33098cd37249342a8bf82f6231dc12a4 Mon Sep 17 00:00:00 2001 From: Jogima-cyber Date: Mon, 7 Nov 2022 16:28:18 +0000 Subject: [PATCH 2/3] Adding multidiscrete home made toy env --- config.yaml | 1 - handyrl/envs/multidiscrete.py | 310 ++++++++++++++++++++++++++++++++++ 2 files changed, 310 insertions(+), 1 deletion(-) create mode 100644 handyrl/envs/multidiscrete.py diff --git a/config.yaml b/config.yaml index e9443f9a..99c66de4 100755 --- a/config.yaml +++ b/config.yaml @@ -1,6 +1,5 @@ env_args: env: 'TicTacToe' - multidiscrete: True #env: 'Geister' #env: 'HungryGeese' #env: 'handyrl.envs.parallel_tictactoe' # specify by path diff --git a/handyrl/envs/multidiscrete.py b/handyrl/envs/multidiscrete.py new file mode 100644 index 00000000..c158a345 --- /dev/null +++ b/handyrl/envs/multidiscrete.py @@ -0,0 +1,310 @@ +import numpy as np +from PIL import Image +import torch +import torch.nn as nn +import torch.nn.functional as F +from ...environment import BaseEnvironment + +class TorusConv2d(nn.Module): + def __init__(self, input_dim, output_dim, kernel_size, bn): + super().__init__() + self.edge_size = (kernel_size[0] // 2, kernel_size[1] // 2) + self.conv = nn.Conv2d(input_dim, output_dim, kernel_size=kernel_size) + self.bn = nn.BatchNorm2d(output_dim) if bn else None + + def forward(self, x): + h = torch.cat([x[:,:,:,-self.edge_size[1]:], x, x[:,:,:,:self.edge_size[1]]], dim=3) + h = torch.cat([h[:,:,-self.edge_size[0]:], h, h[:,:,:self.edge_size[0]]], dim=2) + h = self.conv(h) + h = self.bn(h) if self.bn is not None else h + return h + + +class GeeseNet(nn.Module): + def __init__(self): + super().__init__() + layers, filters = 12, 32 + + self.conv0 = TorusConv2d(4, filters, (3, 3), True) + self.blocks = nn.ModuleList([TorusConv2d(filters, filters, (3, 3), True) for _ in range(layers)]) + self.head_p = nn.Linear(filters, 8, bias=False) + self.head_v = nn.Linear(filters * 2, 1, bias=False) + + def forward(self, x, _=None): + h = F.relu_(self.conv0(x)) + for block in self.blocks: + h = F.relu_(h + block(h)) + h_head = (h * x[:,:1]).view(h.size(0), h.size(1), -1).sum(-1) + h_avg = h.view(h.size(0), h.size(1), -1).mean(-1) + p = self.head_p(h_head) + v = torch.tanh(self.head_v(torch.cat([h_head, h_avg], 1))) + + return {'policy': p, 'value': v} + +class Environment(BaseEnvironment): + ACTION = ['MWEST', 'MEAST', 'MNORTH', 'MSOUTH', 'NOTHING', 'PWEST', 'PEAST', 'PNORTH', 'PSOUTH'] + NUM_AGENTS = 2 + COLORS = [[0.5, 0.5, 0], [0.5, 0, 0.5], [0.25, 0.25, 0.], [0.25, 0., 0.25]] + MAX_STEPS = 100 + def __init__(self, args={}): + super().__init__() + # action space is (move left, move right, move up, move down, stay) + # and (place obstacle left, right, up, down, don't place obstacle) + # therefore [5,5] + self.multidiscrete = False + self.nvec = [5,5] + self.reset() + + def reset(self, args={}): + self.board = np.zeros((10,10)) + self._players = {} + self.steps = 0 + # select initial pos uniformly randomly + # must be careful cause selection of position + # for the secondd player depends on position of first + # because two players cannot be on the same tile + # at the same time + pos = np.array([np.tile(np.arange(10), 10), np.repeat(np.arange(10), 10)]).T + idxs = np.arange(10*10).tolist() + for p in self.players(): + choice = idxs.pop(np.random.choice(idxs)) + self._players[p] = {"pos": pos[choice]} + self.board[pos[choice][0], pos[choice][1]] = p+1 + + obs = self.board + self.update((obs, {}), True) + + def update(self, info, reset): + obs, last_actions = info + if reset: + self.obs_list = [] + self.obs_list.append(obs.copy()) + self.last_actions = last_actions + + def target_pos(self, cur_pos, action): + # left + if action == 0: + return [(cur_pos[0]-1)%10, cur_pos[1]] + # right + elif action == 1: + return [(cur_pos[0]+1)%10, cur_pos[1]] + # up + elif action == 2: + return [cur_pos[0], (cur_pos[1]+1)%10] + #down + elif action == 3: + return [cur_pos[0], (cur_pos[1]-1)%10] + # stay + elif action == 4: + return cur_pos + + def step(self, actions): + if self.multidiscrete: + return self.multidiscrete_step(actions) + else: + return self.discrete_step(actions) + + def discrete_step(self, actions): + dests = {} + # select target position for the action + for p in self.players(): + action = actions.get(p, None) or 0 + cur_pos = self._players[p]["pos"] + # move action + if action <= 4: + dests[p] = { + "move_dest": self.target_pos(cur_pos, action), + "place_dest": None + } + # place action + else: + dests[p] = { + "move_dest": None, + "place_dest": self.target_pos(cur_pos, action-5) + } + + for p1 in self.players(): + if not dests[p1]["move_dest"] is None: + # can move if nothing at target position + valid_move = not self.board[dests[p1]["move_dest"][0], dests[p1]["move_dest"][1]] + + if valid_move: + for p2 in self.players(): + if p1 == p2: + continue + # cannot move if another player wants to move to the same place + if not dests[p2]["move_dest"] is None: + if dests[p1]["move_dest"][0] == dests[p2]["move_dest"][0] and \ + dests[p1]["move_dest"][1] == dests[p2]["move_dest"][1]: + valid_move = False + + if valid_move: + cur_pos = self._players[p1]["pos"] + self.board[cur_pos[0], cur_pos[1]] = 0 + self.board[dests[p1]["move_dest"][0], dests[p1]["move_dest"][1]] = p1+1 + self._players[p1]["pos"] = dests[p1]["move_dest"] + else: + # can place if nothing at target position + valid_place = not self.board[dests[p1]["place_dest"][0], dests[p1]["place_dest"][1]] + + if valid_place: + for p2 in self.players(): + if p1 == p2: + continue + + # cannot place if another player wants to place a tile to target dir + if not dests[p2]["place_dest"] is None: + if (dests[p1]["place_dest"][0] == dests[p2]["place_dest"][0] and \ + dests[p1]["place_dest"][1] == dests[p2]["place_dest"][1]): + valid_place = False + + if valid_place: + self.board[dests[p1]["place_dest"][0], dests[p1]["place_dest"][1]] = self.NUM_AGENTS+2+p1 + + self.steps += 1 + obs = self.board + self.update((obs, actions), False) + + def multidiscrete_step(self, actions): + # state transition + dests = {} + # select target position for both actions + for p in self.players(): + action = actions.get(p, None) or 0 + move_action = action[0] + place_action = action[1] + cur_pos = self._players[p]["pos"] + dests[p] = { + "move_dest": self.target_pos(cur_pos, move_action), + "place_dest": self.target_pos(cur_pos, place_action) if place_action != 4 else None + } + + for p1 in self.players(): + # can move if don't place at target position and if nothing at target position + valid_move = not self.board[dests[p1]["move_dest"][0], dests[p1]["move_dest"][1]] and \ + (dests[p1]["place_dest"] is None or \ + (dests[p1]["move_dest"][0] != dests[p1]["place_dest"][0] or \ + dests[p1]["move_dest"][1] != dests[p1]["place_dest"][1])) + + if valid_move: + for p2 in self.players(): + if p1 == p2: + continue + # cannot move if another player wants to move to the same place + if dests[p1]["move_dest"][0] == dests[p2]["move_dest"][0] and \ + dests[p1]["move_dest"][1] == dests[p2]["move_dest"][1]: + valid_move = False + + if valid_move: + cur_pos = self._players[p1]["pos"] + self.board[cur_pos[0], cur_pos[1]] = 0 + self.board[dests[p1]["move_dest"][0], dests[p1]["move_dest"][1]] = p1+1 + self._players[p1]["pos"] = dests[p1]["move_dest"] + + # can place if nothing at target position + valid_place = dests[p1]["place_dest"] is None or \ + not self.board[dests[p1]["place_dest"][0], dests[p1]["place_dest"][1]] + if valid_place and not dests[p1]["place_dest"] is None: + for p2 in self.players(): + if p1 == p2: + continue + + # cannot place if another player wants to place a tile to target dir + if not dests[p2]["place_dest"] is None: + if (dests[p1]["place_dest"][0] == dests[p2]["place_dest"][0] and \ + dests[p1]["place_dest"][1] == dests[p2]["place_dest"][1]): + valid_place = False + + if valid_place and not dests[p1]["place_dest"] is None: + self.board[dests[p1]["place_dest"][0], dests[p1]["place_dest"][1]] = self.NUM_AGENTS+2+p1 + self.steps += 1 + obs = self.board + self.update((obs, actions), False) + + def diff_info(self, _): + return self.obs_list[-1], self.last_actions + + def turns(self): + # players to move + return self.players() + + def terminal(self): + # check whether terminal state or not + if (self.board == 0).any() and self.steps <= self.MAX_STEPS: + return False + + return True + + def outcome(self): + # return terminal outcomes + rewards = {p: (self.obs_list[-1]==self.NUM_AGENTS+2+p).sum() for p in self.players()} + outcomes = {p: 0 for p in self.players()} + for p, r in rewards.items(): + for pp, rr in rewards.items(): + if p != pp: + if r > rr: + outcomes[p] += 1 / (self.NUM_AGENTS - 1) + elif r < rr: + outcomes[p] -= 1 / (self.NUM_AGENTS - 1) + return outcomes + + + def render(self): + # then use : + # ffmpeg -r 1 -f image2 -s 1920x1080 -i img_%d.png -vcodec libx264 -crf 25 -pix_fmt yuv420p test.mp4 + # to get the resulting video + for j,obs in enumerate(self.obs_list): + img = np.zeros((10,10,3)) + for p in self.players(): + t = np.argwhere(obs==p+1) + img[t[:,0], t[:,1], :] = self.COLORS[p] + t = np.argwhere(obs==self.NUM_AGENTS+2+p) + img[t[:,0], t[:,1], :] = self.COLORS[self.NUM_AGENTS+p] + + Image.fromarray((img*255).astype(np.uint8)).resize([300, 300], resample=Image.NEAREST).save(f"img_{j}.png") + + def legal_actions(self, player): + # return legal action list + cur_pos = self._players[player]["pos"] + la = np.arange(9).tolist() + for i in range(9): + if i <= 3: + target_pos = self.target_pos(cur_pos, i) + if self.board[target_pos[0], target_pos[1]]: + la.remove(i) + elif i>4: + target_pos = self.target_pos(cur_pos, i-5) + if self.board[target_pos[0], target_pos[1]]: + la.remove(i) + + return la + + def players(self): + return list(range(self.NUM_AGENTS)) + + def net(self): + return GeeseNet() + + def observation(self, player=None): + if player is None: + player = 0 + + b = np.zeros((self.NUM_AGENTS * 2, 10, 10), dtype=np.float32) + obs = self.obs_list[-1] + + for p in self.players(): + b[0 + (p - player) % self.NUM_AGENTS] = (obs == p+1).astype(np.uint8) + b[self.NUM_AGENTS + (p - player) % self.NUM_AGENTS] = (obs == self.NUM_AGENTS + 2 + p).astype(np.uint8) + + return b + +if __name__ == '__main__': + e = Environment() + for _ in range(100): + e.reset() + while not e.terminal(): + print(e) + actions = {p: e.legal_actions(p) for p in e.turns()} + e.step({p: random.choice(alist) for p, alist in actions.items()}) + print(e) + print(e.outcome()) From d8d61bbc302cd4b4d8e0761fd5224c1b782bab29 Mon Sep 17 00:00:00 2001 From: Jogima-cyber Date: Mon, 7 Nov 2022 16:59:56 +0000 Subject: [PATCH 3/3] Fixed typo --- handyrl/envs/multidiscrete.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/handyrl/envs/multidiscrete.py b/handyrl/envs/multidiscrete.py index c158a345..565ada2c 100644 --- a/handyrl/envs/multidiscrete.py +++ b/handyrl/envs/multidiscrete.py @@ -3,7 +3,7 @@ import torch import torch.nn as nn import torch.nn.functional as F -from ...environment import BaseEnvironment +from ..environment import BaseEnvironment class TorusConv2d(nn.Module): def __init__(self, input_dim, output_dim, kernel_size, bn): @@ -27,7 +27,7 @@ def __init__(self): self.conv0 = TorusConv2d(4, filters, (3, 3), True) self.blocks = nn.ModuleList([TorusConv2d(filters, filters, (3, 3), True) for _ in range(layers)]) - self.head_p = nn.Linear(filters, 8, bias=False) + self.head_p = nn.Linear(filters, 9, bias=False) self.head_v = nn.Linear(filters * 2, 1, bias=False) def forward(self, x, _=None): @@ -67,7 +67,8 @@ def reset(self, args={}): pos = np.array([np.tile(np.arange(10), 10), np.repeat(np.arange(10), 10)]).T idxs = np.arange(10*10).tolist() for p in self.players(): - choice = idxs.pop(np.random.choice(idxs)) + choice = np.random.choice(idxs) + idxs.remove(choice) self._players[p] = {"pos": pos[choice]} self.board[pos[choice][0], pos[choice][1]] = p+1