-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
395 lines (234 loc) · 11.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#!/usr/local/anaconda3/envs/torch-1.0-py3/bin/python
#coding=utf-8
#pylint: disable=no-member
#pylint: disable=no-name-in-module
#pylint: disable=import-error
from absl import app
from absl import flags
import numpy as np
import pandas as pd
import scipy.sparse as sp
import time
import sys
sys.path.append('../')
import data_process_service.loader as LOADER
import data_process_service.downsampler as DOWNSAMPLER
import data_process_service.filter as FILTER
import data_process_service.reindexer as REINDEXER
import data_process_service.reporter as REPORTER
import data_process_service.splitter as SPLITTER
import data_process_service.generator as GENERATOR
import data_process_service.saver as SAVER
import data_process_service.grapher as GRAPHER
def load_csv(flags_obj, filename, **kwargs):
start_time = time.time()
loader = LOADER.CsvLoader(flags_obj)
record = loader.load(filename, **kwargs)
load_time = time.time() - start_time
print('load time: {:.2f} s'.format(load_time))
return record
def load_coo(flags_obj, filename, **kwargs):
start_time = time.time()
loader = LOADER.CooLoader(flags_obj)
record = loader.load(filename, **kwargs)
load_time = time.time() - start_time
print('load time: {:.2f} s'.format(load_time))
return record
def filter_duplication(flags_obj, record):
start_time = time.time()
duplication_filter = FILTER.DuplicationFilter(flags_obj, record)
record = duplication_filter.filter(record)
filter_duplication_time = time.time() - start_time
print('filter duplication time: {:.2f} s'.format(filter_duplication_time))
return record
def downsample_user(flags_obj, record, frac):
start_time = time.time()
downsampler = DOWNSAMPLER.DownSampler(flags_obj)
record = downsampler.downsample_user(record, frac=frac)
downsample_user_time = time.time() - start_time
print('downsample user time: {:.2f} s'.format(downsample_user_time))
return record
def downsample_item(flags_obj, record, frac):
start_time = time.time()
downsampler = DOWNSAMPLER.DownSampler(flags_obj)
record = downsampler.downsample_item(record, frac=frac)
downsample_item_time = time.time() - start_time
print('downsample item time: {:.2f} s'.format(downsample_item_time))
return record
def filter_cf(flags_obj, record, k_core):
start_time = time.time()
cf_filter = FILTER.CFFilter(flags_obj, record)
record = cf_filter.filter_item_k_core(record, k_core)
record = cf_filter.filter_user_k_core(record, k_core)
filter_cf_time = time.time() - start_time
print('filter cf time: {:.2f} s'.format(filter_cf_time))
return record
def reindex_user_item(flags_obj, record):
start_time = time.time()
reindexer = REINDEXER.Reindexer(flags_obj)
record, user_reindex_map = reindexer.reindex_user(record)
record, item_reindex_map = reindexer.reindex_item(record)
reindex_user_item_time = time.time() - start_time
print('reindex user item time: {:.2f} s'.format(reindex_user_item_time))
return record, user_reindex_map, item_reindex_map
def reindex_feature(flags_obj, record, feature):
start_time = time.time()
reindexer = REINDEXER.Reindexer(flags_obj)
record, feature_reindex_map = reindexer.reindex(record, feature)
reindex_feature_time = time.time() - start_time
print('reindex feature time: {:.2f} s'.format(reindex_feature_time))
return record, feature_reindex_map
def save_reindex_user_item_map(flags_obj, user_reindex_map, item_reindex_map):
start_time = time.time()
saver = SAVER.JsonSaver(flags_obj)
filename = 'user_reindex.json'
saver.save(filename, user_reindex_map)
filename = 'item_reindex.json'
saver.save(filename, item_reindex_map)
save_reindex_user_item_map_time = time.time() - start_time
print('save reindex user item map time: {:.2f} s'.format(save_reindex_user_item_map_time))
def save_reindex_feature_map(flags_obj, feature, feature_reindex_map):
if not isinstance(feature, (list, tuple)):
feature = [feature]
if not isinstance(feature_reindex_map, (list, tuple)):
feature_reindex_map = [feature_reindex_map]
start_time = time.time()
saver = SAVER.JsonSaver(flags_obj)
for f, fm in zip(feature, feature_reindex_map):
filename = '{}_reindex.json'.format(f)
saver.save(filename, fm)
save_reindex_feature_map_time = time.time() - start_time
print('save reindex {} feature map time: {:.2f} s'.format(feature, save_reindex_feature_map_time))
def split(flags_obj, record, splits):
start_time = time.time()
splitter = SPLITTER.PercentageSplitter(flags_obj, record)
train_record, val_record, test_record = splitter.split(record, splits)
split_time = time.time() - start_time
print('split time: {:.2f} s'.format(split_time))
return train_record, val_record, test_record
def skew_split(flags_obj, record, splits, cap=None):
start_time = time.time()
splitter = SPLITTER.SkewSplitter(flags_obj, record)
train_record, val_record, test_record = splitter.split(record, splits, cap)
split_time = time.time() - start_time
print('split time: {:.2f} s'.format(split_time))
return train_record, val_record, test_record
def skew_split_v2(flags_obj, record, splits, cap=None):
start_time = time.time()
splitter = SPLITTER.SkewSplitter(flags_obj, record)
train_record, val_test_record = splitter.split(record, splits, cap)
split_time = time.time() - start_time
print('split time: {:.2f} s'.format(split_time))
return train_record, val_test_record
def skew_split_v3(flags_obj, record, splits, cap=None):
start_time = time.time()
splitter = SPLITTER.SkewSplitter(flags_obj, record)
train_record, val_test_record = splitter.unbiased_split(record, splits, cap)
split_time = time.time() - start_time
print('split time: {:.2f} s'.format(split_time))
return train_record, val_test_record
def skew_extract(flags_obj, skew_record, frac):
start_time = time.time()
splitter = SPLITTER.TemporalSplitter(flags_obj, skew_record)
skew_train_record, skew_test_record = splitter.split(skew_record, [frac, 1-frac])
split_time = time.time() - start_time
print('split time: {:.2f} s'.format(split_time))
return skew_train_record, skew_test_record
def skew_extract_v2(flags_obj, skew_record, frac):
start_time = time.time()
splitter = SPLITTER.TemporalSplitter(flags_obj, skew_record)
skew_train_record, skew_val_record, skew_test_record = splitter.split(skew_record, frac)
split_time = time.time() - start_time
print('split time: {:.2f} s'.format(split_time))
return skew_train_record, skew_val_record, skew_test_record
def skew_extract_v3(flags_obj, skew_record, frac):
start_time = time.time()
splitter = SPLITTER.RandomSplitter(flags_obj, skew_record)
skew_train_record, skew_val_record, skew_test_record = splitter.split(skew_record, frac)
split_time = time.time() - start_time
print('split time: {:.2f} s'.format(split_time))
return skew_train_record, skew_val_record, skew_test_record
def save_csv_record(flags_obj, record, train_record, val_record, test_record, train_skew_record=None):
start_time = time.time()
saver = SAVER.CsvSaver(flags_obj)
filename = 'record.csv'
saver.save(filename, record)
filename = 'train_record.csv'
saver.save(filename, train_record)
filename = 'val_record.csv'
saver.save(filename, val_record)
filename = 'test_record.csv'
saver.save(filename, test_record)
if isinstance(train_skew_record, pd.DataFrame):
filename = 'train_skew_record.csv'
saver.save(filename, train_skew_record)
save_csv_time = time.time() - start_time
print('save csv time: {:.2f} s'.format(save_csv_time))
def report(flags_obj, record):
start_time = time.time()
reporter = REPORTER.CsvReporter(flags_obj)
reporter.report(record)
report_time = time.time() - start_time
print('report time: {:.2f} s'.format(report_time))
def extract_save_item_feature(flags_obj, record, feature, col):
start_time = time.time()
item_feature = record[['iid', col]].drop_duplicates().reset_index(drop=True)
saver = SAVER.CsvSaver(flags_obj)
filename = 'item_{}_feature.csv'.format(feature)
saver.save(filename, item_feature)
extract_save_item_feature_time = time.time() - start_time
print('extract save item feature time: {:.2f} s'.format(extract_save_item_feature_time))
def generate_coo(flags_obj, record, train_record, val_record, test_record, train_skew_record=None):
start_time = time.time()
n_user = record['uid'].nunique()
n_item = record['iid'].nunique()
generator = GENERATOR.CooGenerator(flags_obj)
coo_record = generator.generate(record, n_user=n_user, n_item=n_item)
train_coo_record = generator.generate(train_record, n_user=n_user, n_item=n_item)
val_coo_record = generator.generate(val_record, n_user=n_user, n_item=n_item)
test_coo_record = generator.generate(test_record, n_user=n_user, n_item=n_item)
if isinstance(train_skew_record, pd.DataFrame):
train_skew_coo_record = generator.generate(train_skew_record, n_user=n_user, n_item=n_item)
generate_coo_time = time.time() - start_time
print('generate coo time: {:.2f} s'.format(generate_coo_time))
if isinstance(train_skew_record, pd.DataFrame):
return coo_record, train_coo_record, val_coo_record, test_coo_record, train_skew_coo_record
else:
return coo_record, train_coo_record, val_coo_record, test_coo_record
def save_coo(flags_obj, coo_record, train_coo_record, val_coo_record, test_coo_record, train_skew_coo_record=None):
start_time = time.time()
saver = SAVER.CooSaver(flags_obj)
filename = 'coo_record.npz'
saver.save(filename, coo_record)
filename = 'train_coo_record.npz'
saver.save(filename, train_coo_record)
filename = 'val_coo_record.npz'
saver.save(filename, val_coo_record)
filename = 'test_coo_record.npz'
saver.save(filename, test_coo_record)
if isinstance(train_skew_coo_record, sp.coo_matrix):
filename = 'train_skew_coo_record.npz'
saver.save(filename, train_skew_coo_record)
save_coo_time = time.time() - start_time
print('save coo time: {:.2f} s'.format(save_coo_time))
def compute_popularity(flags_obj, coo_record, filename=None):
start_time = time.time()
popularity = np.zeros(coo_record.shape[1], dtype=np.int64)
dok_record = coo_record.todok()
df = pd.DataFrame(list(dok_record.keys()), columns=['uid', 'iid'])
df = df.groupby('iid').count().reset_index().rename(columns={'uid': 'count'})
popularity[df['iid']] = df['count']
if not filename:
filename = 'popularity.npy'
saver = SAVER.NpySaver(flags_obj)
saver.save(filename, popularity)
compute_time = time.time() - start_time
print('compute and save popularity time: {:.2f} s'.format(compute_time))
def generate_graph(flags_obj, train_coo_record, filename='train_coo_adj_graph.npz'):
start_time = time.time()
grapher = GRAPHER.Grapher(flags_obj)
train_coo_adj_graph = grapher.generate_coo_adj_graph(train_coo_record)
saver =SAVER.CooSaver(flags_obj)
saver.save(filename, train_coo_adj_graph)
generate_time = time.time() - start_time
print('generate adj time: {:.2f} s'.format(generate_time))