This repository has been archived by the owner on Aug 15, 2024. It is now read-only.
forked from hirschmann/pid-autotune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
autotune.py
240 lines (202 loc) · 8.69 KB
/
autotune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import math
import logging
from time import time
from collections import deque, namedtuple
# Based on a fork of Arduino PID AutoTune Library
# See https://github.com/t0mpr1c3/Arduino-PID-AutoTune-Library
class PIDAutotune(object):
"""Determines viable parameters for a PID controller.
Args:
setpoint (float): The target value.
out_step (float): The value by which the output will be
increased/decreased when stepping up/down.
sampletime (float): The interval between run() calls.
loockback (float): The reference period for local minima/maxima.
out_min (float): Lower output limit.
out_max (float): Upper output limit.
noiseband (float): Determines by how much the input value must
overshoot/undershoot the setpoint before the state changes.
time (function): A function which returns the current time in seconds.
"""
PIDParams = namedtuple('PIDParams', ['Kp', 'Ki', 'Kd'])
PEAK_AMPLITUDE_TOLERANCE = 0.05
STATE_OFF = 'off'
STATE_RELAY_STEP_UP = 'relay step up'
STATE_RELAY_STEP_DOWN = 'relay step down'
STATE_SUCCEEDED = 'succeeded'
STATE_FAILED = 'failed'
_tuning_rules = {
# rule: [Kp_divisor, Ki_divisor, Kd_divisor]
"ziegler-nichols": [34, 40, 160],
"tyreus-luyben": [44, 9, 126],
"ciancone-marlin": [66, 88, 162],
"pessen-integral": [28, 50, 133],
"some-overshoot": [60, 40, 60],
"no-overshoot": [100, 40, 60],
"brewing": [2.5, 6, 380]
}
def __init__(self, setpoint, out_step=10, sampletime=5, lookback=60,
out_min=float('-inf'), out_max=float('inf'), noiseband=0.5, time=time):
if setpoint is None:
raise ValueError('setpoint must be specified')
if out_step < 1:
raise ValueError('out_step must be greater or equal to 1')
if sampletime < 1:
raise ValueError('sampletime must be greater or equal to 1')
if lookback < sampletime:
raise ValueError('lookback must be greater or equal to sampletime')
if out_min >= out_max:
raise ValueError('out_min must be less than out_max')
self._time = time
self._logger = logging.getLogger(type(self).__name__)
self._inputs = deque(maxlen=round(lookback / sampletime))
self._sampletime = sampletime * 1000
self._setpoint = setpoint
self._outputstep = out_step
self._noiseband = noiseband
self._out_min = out_min
self._out_max = out_max
self._state = PIDAutotune.STATE_OFF
self._peak_timestamps = deque(maxlen=5)
self._peaks = deque(maxlen=5)
self._output = 0
self._last_run_timestamp = 0
self._peak_type = 0
self._peak_count = 0
self._initial_output = 0
self._induced_amplitude = 0
self._Ku = 0
self._Pu = 0
@property
def state(self):
"""Get the current state."""
return self._state
@property
def output(self):
"""Get the last output value."""
return self._output
@property
def tuning_rules(self):
"""Get a list of all available tuning rules."""
return self._tuning_rules.keys()
def get_pid_parameters(self, tuning_rule='ziegler-nichols'):
"""Get PID parameters.
Args:
tuning_rule (str): Sets the rule which should be used to calculate
the parameters.
"""
divisors = self._tuning_rules[tuning_rule]
kp = self._Ku / divisors[0]
ki = kp / (self._Pu / divisors[1])
kd = kp * (self._Pu / divisors[2])
return PIDAutotune.PIDParams(kp, ki, kd)
def run(self, input_val):
"""To autotune a system, this method must be called periodically.
Args:
input_val (float): The input value.
Returns:
`true` if tuning is finished, otherwise `false`.
"""
now = self._time() * 1000
if (self._state == PIDAutotune.STATE_OFF
or self._state == PIDAutotune.STATE_SUCCEEDED
or self._state == PIDAutotune.STATE_FAILED):
self._initTuner(input_val, now)
elif (now - self._last_run_timestamp) < self._sampletime:
return False
self._last_run_timestamp = now
# check input and change relay state if necessary
if (self._state == PIDAutotune.STATE_RELAY_STEP_UP
and input_val > self._setpoint + self._noiseband):
self._state = PIDAutotune.STATE_RELAY_STEP_DOWN
self._logger.debug('switched state: {0}'.format(self._state))
self._logger.debug('input: {0}'.format(input_val))
elif (self._state == PIDAutotune.STATE_RELAY_STEP_DOWN
and input_val < self._setpoint - self._noiseband):
self._state = PIDAutotune.STATE_RELAY_STEP_UP
self._logger.debug('switched state: {0}'.format(self._state))
self._logger.debug('input: {0}'.format(input_val))
# set output
if (self._state == PIDAutotune.STATE_RELAY_STEP_UP):
self._output = self._initial_output + self._outputstep
elif self._state == PIDAutotune.STATE_RELAY_STEP_DOWN:
self._output = self._initial_output - self._outputstep
# respect output limits
self._output = min(self._output, self._out_max)
self._output = max(self._output, self._out_min)
# identify peaks
is_max = True
is_min = True
for val in self._inputs:
is_max = is_max and (input_val >= val)
is_min = is_min and (input_val <= val)
self._inputs.append(input_val)
# we don't want to trust the maxes or mins until the input array is full
if len(self._inputs) < self._inputs.maxlen:
return False
# increment peak count and record peak time for maxima and minima
inflection = False
# peak types:
# -1: minimum
# +1: maximum
if is_max:
if self._peak_type == -1:
inflection = True
self._peak_type = 1
elif is_min:
if self._peak_type == 1:
inflection = True
self._peak_type = -1
# update peak times and values
if inflection:
self._peak_count += 1
self._peaks.append(input_val)
self._peak_timestamps.append(now)
self._logger.debug('found peak: {0}'.format(input_val))
self._logger.debug('peak count: {0}'.format(self._peak_count))
# check for convergence of induced oscillation
# convergence of amplitude assessed on last 4 peaks (1.5 cycles)
self._induced_amplitude = 0
if inflection and (self._peak_count > 4):
abs_max = self._peaks[-2]
abs_min = self._peaks[-2]
for i in range(0, len(self._peaks) - 2):
self._induced_amplitude += abs(self._peaks[i] - self._peaks[i+1])
abs_max = max(self._peaks[i], abs_max)
abs_min = min(self._peaks[i], abs_min)
self._induced_amplitude /= 6.0
# check convergence criterion for amplitude of induced oscillation
amplitude_dev = ((0.5 * (abs_max - abs_min) - self._induced_amplitude)
/ self._induced_amplitude)
self._logger.debug('amplitude: {0}'.format(self._induced_amplitude))
self._logger.debug('amplitude deviation: {0}'.format(amplitude_dev))
if amplitude_dev < PIDAutotune.PEAK_AMPLITUDE_TOLERANCE:
self._state = PIDAutotune.STATE_SUCCEEDED
# if the autotune has not already converged
# terminate after 10 cycles
if self._peak_count >= 20:
self._output = 0
self._state = PIDAutotune.STATE_FAILED
return True
if self._state == PIDAutotune.STATE_SUCCEEDED:
self._output = 0
# calculate ultimate gain
self._Ku = 4.0 * self._outputstep / (self._induced_amplitude * math.pi)
# calculate ultimate period in seconds
period1 = self._peak_timestamps[3] - self._peak_timestamps[1]
period2 = self._peak_timestamps[4] - self._peak_timestamps[2]
self._Pu = 0.5 * (period1 + period2) / 1000.0
return True
return False
def _initTuner(self, inputValue, timestamp):
self._peak_type = 0
self._peak_count = 0
self._output = 0
self._initial_output = 0
self._Ku = 0
self._Pu = 0
self._inputs.clear()
self._peaks.clear()
self._peak_timestamps.clear()
self._peak_timestamps.append(timestamp)
self._state = PIDAutotune.STATE_RELAY_STEP_UP