Skip to content

docs: improve examples #27

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@ COPY examples/minimal.py /root/minimal.py

RUN python -c 'from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models; load_pretrained_nlp_models(verbose=True);'
RUN python -c 'from docling.document_converter import DocumentConverter; artifacts_path = DocumentConverter.download_models_hf(force=True);'
RUN wget "https://www.ibm.com/docs/en/SSQRB8/com.ibm.spectrum.si.pdfs/IBM_Storage_Insights_Fact_Sheet.pdf" -O /root/factsheet.pdf

# On container shell:
# > cd /root/
Expand Down
8 changes: 6 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,17 +56,21 @@ print(doc.export_to_markdown()) # output: "## DocLayNet: A Large Human-Annotate

### Convert a batch of documents

For an example of batch-converting documents, see [convert.py](https://github.com/DS4SD/docling/blob/main/examples/convert.py).
For an example of batch-converting documents, see [batch_convert.py](https://github.com/DS4SD/docling/blob/main/examples/batch_convert.py).

From a local repo clone, you can run it with:

```
python examples/convert.py
python examples/batch_convert.py
```
The output of the above command will be written to `./scratch`.

### Adjust pipeline features

The example file [custom_convert.py](https://github.com/DS4SD/docling/blob/main/examples/custom_convert.py) contains multiple ways
one can adjust the conversion pipeline and features.


#### Control pipeline options

You can control if table structure recognition or OCR should be performed by arguments passed to `DocumentConverter`:
Expand Down
15 changes: 2 additions & 13 deletions examples/convert.py → examples/batch_convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,7 @@
from pathlib import Path
from typing import Iterable

# from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import ConvertedDocument, DocumentConversionInput
from docling.document_converter import DocumentConverter

Expand Down Expand Up @@ -52,16 +50,7 @@ def main():
Path("./test/data/2305.03393v1.pdf"),
]

artifacts_path = DocumentConverter.download_models_hf()

pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = True

doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=pipeline_options,
pdf_backend=DoclingParseDocumentBackend,
)
doc_converter = DocumentConverter()

input = DocumentConversionInput.from_paths(input_doc_paths)

Expand Down
125 changes: 125 additions & 0 deletions examples/custom_convert.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
import json
import logging
import time
from pathlib import Path
from typing import Iterable

from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
from docling.datamodel.document import ConvertedDocument, DocumentConversionInput
from docling.document_converter import DocumentConverter

_log = logging.getLogger(__name__)


def export_documents(
converted_docs: Iterable[ConvertedDocument],
output_dir: Path,
):
output_dir.mkdir(parents=True, exist_ok=True)

success_count = 0
failure_count = 0

for doc in converted_docs:
if doc.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = doc.input.file.stem

# Export Deep Search document JSON format:
with (output_dir / f"{doc_filename}.json").open("w") as fp:
fp.write(json.dumps(doc.render_as_dict()))

# Export Markdown format:
with (output_dir / f"{doc_filename}.md").open("w") as fp:
fp.write(doc.render_as_markdown())
else:
_log.info(f"Document {doc.input.file} failed to convert.")
failure_count += 1

_log.info(
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
)


def main():
logging.basicConfig(level=logging.INFO)

input_doc_paths = [
Path("./test/data/2206.01062.pdf"),
Path("./test/data/2203.01017v2.pdf"),
Path("./test/data/2305.03393v1.pdf"),
]

###########################################################################

# The following sections contain a combination of PipelineOptions
# and PDF Backends for various configurations.
# Uncomment one section at the time to see the differences in the output.

# PyPdfium without OCR
# --------------------
# pipeline_options = PipelineOptions()
# pipeline_options.do_ocr=False
# pipeline_options.do_table_structure=True
# pipeline_options.table_structure_options.do_cell_matching = False

# doc_converter = DocumentConverter(
# pipeline_options=pipeline_options,
# pdf_backend=PyPdfiumDocumentBackend,
# )

# PyPdfium with OCR
# -----------------
# pipeline_options = PipelineOptions()
# pipeline_options.do_ocr=False
# pipeline_options.do_table_structure=True
# pipeline_options.table_structure_options.do_cell_matching = True

# doc_converter = DocumentConverter(
# pipeline_options=pipeline_options,
# pdf_backend=PyPdfiumDocumentBackend,
# )

# Docling Parse without OCR
# -------------------------
pipeline_options = PipelineOptions()
pipeline_options.do_ocr = False
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True

doc_converter = DocumentConverter(
pipeline_options=pipeline_options,
pdf_backend=DoclingParseDocumentBackend,
)

# Docling Parse with OCR
# ----------------------
# pipeline_options = PipelineOptions()
# pipeline_options.do_ocr=True
# pipeline_options.do_table_structure=True
# pipeline_options.table_structure_options.do_cell_matching = True

# doc_converter = DocumentConverter(
# pipeline_options=pipeline_options,
# pdf_backend=DoclingParseDocumentBackend,
# )

###########################################################################

# Define input files
input = DocumentConversionInput.from_paths(input_doc_paths)

start_time = time.time()

converted_docs = doc_converter.convert(input)
export_documents(converted_docs, output_dir=Path("./scratch"))

end_time = time.time() - start_time

_log.info(f"All documents were converted in {end_time:.2f} seconds.")


if __name__ == "__main__":
main()
15 changes: 6 additions & 9 deletions examples/minimal.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,8 @@
from docling.datamodel.document import DocumentConversionInput
from docling.document_converter import DocumentConverter

artifacts_path = DocumentConverter.download_models_hf()
doc_converter = DocumentConverter(artifacts_path=artifacts_path)

input = DocumentConversionInput.from_paths(["factsheet.pdf"])
converted_docs = doc_converter.convert(input)

for d in converted_docs:
print(d.render_as_dict())
source = "https://arxiv.org/pdf/2206.01062" # PDF path or URL
converter = DocumentConverter()
doc = converter.convert_single(source)
print(
doc.export_to_markdown()
) # output: "## DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis [...]"
Loading