-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathoff_policy_algorithm.py
474 lines (412 loc) · 20.3 KB
/
off_policy_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import io
import pathlib
import time
import warnings
from typing import Any, Dict, Optional, Tuple, Type, Union
import gym
import numpy as np
import torch as th
from stable_baselines3.common import logger
from stable_baselines3.common.base_class import BaseAlgorithm
from stable_baselines3.common.buffers import ReplayBuffer
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.noise import ActionNoise
from stable_baselines3.common.policies import BasePolicy
from stable_baselines3.common.save_util import load_from_pkl, save_to_pkl
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, RolloutReturn, Schedule
from stable_baselines3.common.utils import safe_mean
from stable_baselines3.common.vec_env import VecEnv
class OffPolicyAlgorithm(BaseAlgorithm):
"""
The base for Off-Policy algorithms (ex: SAC/TD3)
:param policy: Policy object
:param env: The environment to learn from
(if registered in Gym, can be str. Can be None for loading trained models)
:param policy_base: The base policy used by this method
:param learning_rate: learning rate for the optimizer,
it can be a function of the current progress remaining (from 1 to 0)
:param buffer_size: size of the replay buffer
:param learning_starts: how many steps of the model to collect transitions for before learning starts
:param batch_size: Minibatch size for each gradient update
:param tau: the soft update coefficient ("Polyak update", between 0 and 1)
:param gamma: the discount factor
:param train_freq: Update the model every ``train_freq`` steps. Set to `-1` to disable.
:param gradient_steps: How many gradient steps to do after each rollout
(see ``train_freq`` and ``n_episodes_rollout``)
Set to ``-1`` means to do as many gradient steps as steps done in the environment
during the rollout.
:param n_episodes_rollout: Update the model every ``n_episodes_rollout`` episodes.
Note that this cannot be used at the same time as ``train_freq``. Set to `-1` to disable.
:param action_noise: the action noise type (None by default), this can help
for hard exploration problem. Cf common.noise for the different action noise type.
:param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
at a cost of more complexity.
See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
:param policy_kwargs: Additional arguments to be passed to the policy on creation
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param verbose: The verbosity level: 0 none, 1 training information, 2 debug
:param device: Device on which the code should run.
By default, it will try to use a Cuda compatible device and fallback to cpu
if it is not possible.
:param support_multi_env: Whether the algorithm supports training
with multiple environments (as in A2C)
:param create_eval_env: Whether to create a second environment that will be
used for evaluating the agent periodically. (Only available when passing string for the environment)
:param monitor_wrapper: When creating an environment, whether to wrap it
or not in a Monitor wrapper.
:param seed: Seed for the pseudo random generators
:param use_sde: Whether to use State Dependent Exploration (SDE)
instead of action noise exploration (default: False)
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)
:param use_sde_at_warmup: Whether to use gSDE instead of uniform sampling
during the warm up phase (before learning starts)
:param sde_support: Whether the model support gSDE or not
:param remove_time_limit_termination: Remove terminations (dones) that are due to time limit.
See https://github.com/hill-a/stable-baselines/issues/863
:param supported_action_spaces: The action spaces supported by the algorithm.
"""
def __init__(
self,
policy: Type[BasePolicy],
env: Union[GymEnv, str],
policy_base: Type[BasePolicy],
learning_rate: Union[float, Schedule],
buffer_size: int = int(1e6),
learning_starts: int = 100,
batch_size: int = 256,
tau: float = 0.005,
gamma: float = 0.99,
train_freq: int = 1,
gradient_steps: int = 1,
n_episodes_rollout: int = -1,
action_noise: Optional[ActionNoise] = None,
optimize_memory_usage: bool = False,
policy_kwargs: Dict[str, Any] = None,
tensorboard_log: Optional[str] = None,
verbose: int = 0,
device: Union[th.device, str] = "auto",
support_multi_env: bool = False,
create_eval_env: bool = False,
monitor_wrapper: bool = True,
seed: Optional[int] = None,
use_sde: bool = False,
sde_sample_freq: int = -1,
use_sde_at_warmup: bool = False,
sde_support: bool = True,
remove_time_limit_termination: bool = False,
supported_action_spaces: Optional[Tuple[gym.spaces.Space, ...]] = None,
):
super(OffPolicyAlgorithm, self).__init__(
policy=policy,
env=env,
policy_base=policy_base,
learning_rate=learning_rate,
policy_kwargs=policy_kwargs,
tensorboard_log=tensorboard_log,
verbose=verbose,
device=device,
support_multi_env=support_multi_env,
create_eval_env=create_eval_env,
monitor_wrapper=monitor_wrapper,
seed=seed,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
supported_action_spaces=supported_action_spaces,
)
self.buffer_size = buffer_size
self.batch_size = batch_size
self.learning_starts = learning_starts
self.tau = tau
self.gamma = gamma
self.train_freq = train_freq
self.gradient_steps = gradient_steps
self.n_episodes_rollout = n_episodes_rollout
self.action_noise = action_noise
self.optimize_memory_usage = optimize_memory_usage
# Remove terminations (dones) that are due to time limit
# see https://github.com/hill-a/stable-baselines/issues/863
self.remove_time_limit_termination = remove_time_limit_termination
if train_freq > 0 and n_episodes_rollout > 0:
warnings.warn(
"You passed a positive value for `train_freq` and `n_episodes_rollout`."
"Please make sure this is intended. "
"The agent will collect data by stepping in the environment "
"until both conditions are true: "
"`number of steps in the env` >= `train_freq` and "
"`number of episodes` > `n_episodes_rollout`"
)
self.actor = None # type: Optional[th.nn.Module]
self.replay_buffer = None # type: Optional[ReplayBuffer]
# Update policy keyword arguments
if sde_support:
self.policy_kwargs["use_sde"] = self.use_sde
# For gSDE only
self.use_sde_at_warmup = use_sde_at_warmup
def _setup_model(self) -> None:
self._setup_lr_schedule()
self.set_random_seed(self.seed)
self.replay_buffer = ReplayBuffer(
self.buffer_size,
self.observation_space,
self.action_space,
self.device,
optimize_memory_usage=self.optimize_memory_usage,
)
self.policy = self.policy_class(
self.observation_space,
self.action_space,
self.lr_schedule,
**self.policy_kwargs # pytype:disable=not-instantiable
)
self.policy = self.policy.to(self.device)
def save_replay_buffer(self, path: Union[str, pathlib.Path, io.BufferedIOBase]) -> None:
"""
Save the replay buffer as a pickle file.
:param path: Path to the file where the replay buffer should be saved.
if path is a str or pathlib.Path, the path is automatically created if necessary.
"""
assert self.replay_buffer is not None, "The replay buffer is not defined"
save_to_pkl(path, self.replay_buffer, self.verbose)
def load_replay_buffer(self, path: Union[str, pathlib.Path, io.BufferedIOBase]) -> None:
"""
Load a replay buffer from a pickle file.
:param path: Path to the pickled replay buffer.
"""
self.replay_buffer = load_from_pkl(path, self.verbose)
assert isinstance(self.replay_buffer, ReplayBuffer), "The replay buffer must inherit from ReplayBuffer class"
def _setup_learn(
self,
total_timesteps: int,
eval_env: Optional[GymEnv],
callback: MaybeCallback = None,
eval_freq: int = 10000,
n_eval_episodes: int = 5,
log_path: Optional[str] = None,
reset_num_timesteps: bool = True,
tb_log_name: str = "run",
) -> Tuple[int, BaseCallback]:
"""
cf `BaseAlgorithm`.
"""
# Prevent continuity issue by truncating trajectory
# when using memory efficient replay buffer
# see https://github.com/DLR-RM/stable-baselines3/issues/46
truncate_last_traj = (
self.optimize_memory_usage
and reset_num_timesteps
and self.replay_buffer is not None
and (self.replay_buffer.full or self.replay_buffer.pos > 0)
)
if truncate_last_traj:
warnings.warn(
"The last trajectory in the replay buffer will be truncated, "
"see https://github.com/DLR-RM/stable-baselines3/issues/46."
"You should use `reset_num_timesteps=False` or `optimize_memory_usage=False`"
"to avoid that issue."
)
# Go to the previous index
pos = (self.replay_buffer.pos - 1) % self.replay_buffer.buffer_size
self.replay_buffer.dones[pos] = True
return super()._setup_learn(
total_timesteps, eval_env, callback, eval_freq, n_eval_episodes, log_path, reset_num_timesteps, tb_log_name
)
def learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 4,
eval_env: Optional[GymEnv] = None,
eval_freq: int = -1,
n_eval_episodes: int = 5,
tb_log_name: str = "run",
eval_log_path: Optional[str] = None,
reset_num_timesteps: bool = True,
) -> "OffPolicyAlgorithm":
total_timesteps, callback = self._setup_learn(
total_timesteps, eval_env, callback, eval_freq, n_eval_episodes, eval_log_path, reset_num_timesteps, tb_log_name
)
callback.on_training_start(locals(), globals())
while self.num_timesteps < total_timesteps:
rollout = self.collect_rollouts(
self.env,
n_episodes=self.n_episodes_rollout,
n_steps=self.train_freq,
action_noise=self.action_noise,
callback=callback,
learning_starts=self.learning_starts,
replay_buffer=self.replay_buffer,
log_interval=log_interval,
)
if rollout.continue_training is False:
break
if self.num_timesteps > 0 and self.num_timesteps > self.learning_starts:
# If no `gradient_steps` is specified,
# do as many gradients steps as steps performed during the rollout
gradient_steps = self.gradient_steps if self.gradient_steps > 0 else rollout.episode_timesteps
self.train(batch_size=self.batch_size, gradient_steps=gradient_steps)
callback.on_training_end()
return self
def train(self, gradient_steps: int, batch_size: int) -> None:
"""
Sample the replay buffer and do the updates
(gradient descent and update target networks)
"""
raise NotImplementedError()
def _sample_action(
self, learning_starts: int, action_noise: Optional[ActionNoise] = None
) -> Tuple[np.ndarray, np.ndarray]:
"""
Sample an action according to the exploration policy.
This is either done by sampling the probability distribution of the policy,
or sampling a random action (from a uniform distribution over the action space)
or by adding noise to the deterministic output.
:param action_noise: Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.
:param learning_starts: Number of steps before learning for the warm-up phase.
:return: action to take in the environment
and scaled action that will be stored in the replay buffer.
The two differs when the action space is not normalized (bounds are not [-1, 1]).
"""
# Select action randomly or according to policy
if self.num_timesteps < learning_starts and not (self.use_sde and self.use_sde_at_warmup):
# Warmup phase
unscaled_action = np.array([self.action_space.sample()])
else:
# Note: when using continuous actions,
# we assume that the policy uses tanh to scale the action
# We use non-deterministic action in the case of SAC, for TD3, it does not matter
unscaled_action, _ = self.predict(self._last_obs, deterministic=False)
# Rescale the action from [low, high] to [-1, 1]
if isinstance(self.action_space, gym.spaces.Box):
scaled_action = self.policy.scale_action(unscaled_action)
# Add noise to the action (improve exploration)
if action_noise is not None:
scaled_action = np.clip(scaled_action + action_noise(), -1, 1)
# We store the scaled action in the buffer
buffer_action = scaled_action
action = self.policy.unscale_action(scaled_action)
else:
# Discrete case, no need to normalize or clip
buffer_action = unscaled_action
action = buffer_action
return action, buffer_action
def _dump_logs(self) -> None:
"""
Write log.
"""
fps = int(self.num_timesteps / (time.time() - self.start_time))
logger.record("time/episodes", self._episode_num, exclude="tensorboard")
if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0:
logger.record("rollout/ep_rew_mean", safe_mean([ep_info["r"] for ep_info in self.ep_info_buffer]))
logger.record("rollout/ep_len_mean", safe_mean([ep_info["l"] for ep_info in self.ep_info_buffer]))
logger.record("time/fps", fps)
logger.record("time/time_elapsed", int(time.time() - self.start_time), exclude="tensorboard")
logger.record("time/total timesteps", self.num_timesteps, exclude="tensorboard")
if self.use_sde:
logger.record("train/std", (self.actor.get_std()).mean().item())
if len(self.ep_success_buffer) > 0:
logger.record("rollout/success rate", safe_mean(self.ep_success_buffer))
# Pass the number of timesteps for tensorboard
logger.dump(step=self.num_timesteps)
def _on_step(self) -> None:
"""
Method called after each step in the environment.
It is meant to trigger DQN target network update
but can be used for other purposes
"""
pass
def collect_rollouts(
self,
env: VecEnv,
callback: BaseCallback,
n_episodes: int = 1,
n_steps: int = -1,
action_noise: Optional[ActionNoise] = None,
learning_starts: int = 0,
replay_buffer: Optional[ReplayBuffer] = None,
log_interval: Optional[int] = None,
) -> RolloutReturn:
"""
Collect experiences and store them into a ``ReplayBuffer``.
:param env: The training environment
:param callback: Callback that will be called at each step
(and at the beginning and end of the rollout)
:param n_episodes: Number of episodes to use to collect rollout data
You can also specify a ``n_steps`` instead
:param n_steps: Number of steps to use to collect rollout data
You can also specify a ``n_episodes`` instead.
:param action_noise: Action noise that will be used for exploration
Required for deterministic policy (e.g. TD3). This can also be used
in addition to the stochastic policy for SAC.
:param learning_starts: Number of steps before learning for the warm-up phase.
:param replay_buffer:
:param log_interval: Log data every ``log_interval`` episodes
:return:
"""
episode_rewards, total_timesteps = [], []
total_steps, total_episodes = 0, 0
assert isinstance(env, VecEnv), "You must pass a VecEnv"
assert env.num_envs == 1, "OffPolicyAlgorithm only support single environment"
if self.use_sde:
self.actor.reset_noise()
callback.on_rollout_start()
continue_training = True
while total_steps < n_steps or total_episodes < n_episodes:
done = False
episode_reward, episode_timesteps = 0.0, 0
while not done:
if self.use_sde and self.sde_sample_freq > 0 and total_steps % self.sde_sample_freq == 0:
# Sample a new noise matrix
self.actor.reset_noise()
# Select action randomly or according to policy
action, buffer_action = self._sample_action(learning_starts, action_noise)
# Rescale and perform action
new_obs, reward, done, infos = env.step(action)
self.num_timesteps += 1
episode_timesteps += 1
total_steps += 1
# Give access to local variables
callback.update_locals(locals())
# Only stop training if return value is False, not when it is None.
if callback.on_step() is False:
return RolloutReturn(0.0, total_steps, total_episodes, continue_training=False)
episode_reward += reward
# Retrieve reward and episode length if using Monitor wrapper
self._update_info_buffer(infos, done)
# Store data in replay buffer
if replay_buffer is not None:
# Store only the unnormalized version
if self._vec_normalize_env is not None:
new_obs_ = self._vec_normalize_env.get_original_obs()
reward_ = self._vec_normalize_env.get_original_reward()
else:
# Avoid changing the original ones
self._last_original_obs, new_obs_, reward_ = self._last_obs, new_obs, reward
replay_buffer.add(self._last_original_obs, new_obs_, buffer_action, reward_, done)
self._last_obs = new_obs
# Save the unnormalized observation
if self._vec_normalize_env is not None:
self._last_original_obs = new_obs_
self._update_current_progress_remaining(self.num_timesteps, self._total_timesteps)
# For DQN, check if the target network should be updated
# and update the exploration schedule
# For SAC/TD3, the update is done as the same time as the gradient update
# see https://github.com/hill-a/stable-baselines/issues/900
self._on_step()
if 0 < n_steps <= total_steps:
break
if done:
total_episodes += 1
self._episode_num += 1
episode_rewards.append(episode_reward)
total_timesteps.append(episode_timesteps)
if action_noise is not None:
action_noise.reset()
# Log training infos
if log_interval is not None and self._episode_num % log_interval == 0:
self._dump_logs()
mean_reward = np.mean(episode_rewards) if total_episodes > 0 else 0.0
callback.on_rollout_end()
return RolloutReturn(mean_reward, total_steps, total_episodes, continue_training)