-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrlwe.go
796 lines (692 loc) · 46.4 KB
/
rlwe.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
// this file implements the RLWE ( Ring learning with errors)
// lattice based encryption, the algorithm as of writing the source seems to be
// safe from quantum computer attacks
// this file implements a non-constant time gaussian base RLWE with params n = 1024 q 40961
// the above parameters have been proved to deliver minimal 2^256 bit security, upper limit not yet found
package rlwe
import (
"fmt"
)
//import "math/rand"
//type RINGELT uint32
type RINGELT uint32
type FFTLONG uint64
/* below starts the code to compute Number Theoretic Transform f0r multiplicattion in ring F_q[x] / <x^n+1>
n = 1024, q = 40961 */
var W = [1024]RINGELT{1, 40, 1600, 23039, 20418, 38461, 22883, 14178, 34627, 33367, 23928, 15017, 27226, 24054, 20057, 24021, 18737, 12182, 36709, 34725, 37287, 16884, 19984, 21101, 24820, 9736, 20791, 12420, 5268, 5915, 31795, 2009, 39399, 19442, 40382, 17801, 15703, 13705, 15707, 13865, 22107, 24099, 21857, 14099, 31467, 29850, 6131, 40435, 19921, 18581, 5942, 32875, 4248, 6076, 38235, 13843, 21227, 29860, 6531, 15474, 4545, 17956, 21903, 15939, 23145, 24658, 3256, 7357, 7553, 15393, 1305, 11239, 39950, 521, 20840, 14380, 1746, 28879, 8252, 2392, 13758, 17827, 16743, 14344, 306, 12240, 39029, 4642, 21836, 13259, 38828, 37563, 27924, 11013, 30910, 7570, 16073, 28505, 34253, 18407, 39943, 241, 9640, 16951, 22664, 5418, 11915, 26029, 17135, 30024, 13091, 32108, 14529, 7706, 21513, 339, 13560, 9907, 27631, 40254, 12681, 15708, 13905, 23707, 6177, 1314, 11599, 13389, 3067, 40758, 32841, 2888, 33598, 33168, 15968, 24305, 30097, 16011, 26025, 16975, 23624, 2857, 32358, 24529, 39057, 5762, 25675, 2975, 37078, 8524, 13272, 39348, 17402, 40704, 30681, 39371, 18322, 36543, 28085, 17453, 1783, 30359, 26491, 35615, 31926, 7249, 3233, 6437, 11714, 17989, 23223, 27778, 5173, 2115, 2678, 25198, 24856, 11176, 37430, 22604, 3018, 38798, 36363, 20885, 16180, 32785, 648, 25920, 12775, 19468, 461, 18440, 302, 12080, 32629, 35369, 22086, 23259, 29218, 21812, 12299, 428, 17120, 29424, 30052, 14211, 35947, 4245, 5956, 33435, 26648, 934, 37360, 19804, 13901, 23547, 40738, 32041, 11849, 23389, 34418, 25007, 17216, 33264, 19808, 14061, 29947, 10011, 31791, 1849, 32999, 9208, 40632, 27801, 6093, 38915, 82, 3280, 8317, 4992, 35836, 40766, 33161, 15688, 13105, 32668, 36929, 2564, 20638, 6300, 6234, 3594, 20877, 15860, 19985, 21141, 26420, 32775, 248, 9920, 28151, 20093, 25461, 35376, 22366, 34459, 26647, 894, 35760, 37726, 34444, 26047, 17855, 17863, 18183, 30983, 10490, 9990, 30951, 9210, 40712, 31001, 11210, 38790, 36043, 8085, 36673, 33285, 20648, 6700, 22234, 29179, 20252, 31821, 3049, 40038, 4041, 38757, 34723, 37207, 13684, 14867, 21226, 29820, 4931, 33396, 25088, 20456, 39981, 1761, 29479, 32252, 20289, 33301, 21288, 32300, 22209, 28179, 21213, 29300, 25092, 20616, 5420, 11995, 29229, 22252, 29899, 8091, 36913, 1924, 35999, 6325, 7234, 2633, 23398, 34778, 39407, 19762, 12221, 38269, 15203, 34666, 34927, 4406, 12396, 4308, 8476, 11352, 3509, 17477, 2743, 27798, 5973, 34115, 12887, 23948, 15817, 18265, 34263, 18807, 14982, 25826, 9015, 32912, 5728, 24315, 30497, 32011, 10649, 16350, 39585, 26882, 10294, 2150, 4078, 40237, 12001, 29469, 31852, 4289, 7716, 21913, 16339, 39145, 9282, 2631, 23318, 31578, 34290, 19887, 17221, 33464, 27808, 6373, 9154, 38472, 23323, 31778, 1329, 12199, 37389, 20964, 19340, 36302, 18445, 502, 20080, 24941, 14576, 9586, 14791, 18186, 31103, 15290, 38146, 10283, 1710, 27439, 32574, 33169, 16008, 25905, 12175, 36429, 23525, 39858, 37802, 37484, 24764, 7496, 13113, 32988, 8768, 23032, 20138, 27261, 25454, 35096, 11166, 37030, 6604, 18394, 39423, 20402, 37821, 38244, 14203, 35627, 32406, 26449, 33935, 5687, 22675, 5858, 29515, 33692, 36928, 2524, 19038, 24222, 26777, 6094, 38955, 1682, 26319, 28735, 2492, 17758, 13983, 26827, 8094, 37033, 6724, 23194, 26618, 40695, 30321, 24971, 15776, 16625, 9624, 16311, 38025, 5443, 12915, 25068, 19656, 7981, 32513, 30729, 330, 13200, 36468, 25085, 20336, 35181, 14566, 9186, 39752, 33562, 31728, 40290, 14121, 32347, 24089, 21457, 39060, 5882, 30475, 31131, 16410, 1024, 40960, 40921, 39361, 17922, 20543, 2500, 18078, 26783, 6334, 7594, 17033, 25944, 13735, 16907, 20904, 16940, 22224, 28779, 4252, 6236, 3674, 24077, 20977, 19860, 16141, 31225, 20170, 28541, 35693, 35046, 9166, 38952, 1562, 21519, 579, 23160, 25258, 27256, 25254, 27096, 18854, 16862, 19104, 26862, 9494, 11111, 34830, 526, 21040, 22380, 35019, 8086, 36713, 34885, 2726, 27118, 19734, 11101, 34430, 25487, 36416, 23005, 19058, 25022, 17816, 16303, 37705, 33604, 33408, 25568, 39656, 29722, 1011, 40440, 20121, 26581, 39215, 12082, 32709, 38569, 27203, 23134, 24218, 26617, 40655, 28721, 1932, 36319, 19125, 27702, 2133, 3398, 13037, 29948, 10051, 33391, 24888, 12456, 6708, 22554, 1018, 40720, 31321, 24010, 18297, 35543, 29046, 14932, 23826, 10937, 27870, 8853, 26432, 33255, 19448, 40622, 27401, 31054, 13330, 707, 28280, 25253, 27056, 17254, 34784, 39647, 29362, 27572, 37894, 203, 8120, 38073, 7363, 7793, 24993, 16656, 10864, 24950, 14936, 23986, 17337, 38104, 8603, 16432, 1904, 35199, 15286, 37986, 3883, 32437, 27689, 1613, 23559, 257, 10280, 1590, 22639, 4418, 12876, 23508, 39178, 10602, 14470, 5346, 9035, 33712, 37728, 34524, 29247, 22972, 17738, 13183, 35788, 38846, 38283, 15763, 16105, 29785, 3531, 18357, 37943, 2163, 4598, 20076, 24781, 8176, 40313, 15041, 28186, 21493, 40500, 22521, 40659, 28881, 8332, 5592, 18875, 17702, 11743, 19149, 28662, 40533, 23841, 11537, 10909, 26750, 5014, 36716, 35005, 7526, 14313, 40027, 3601, 21157, 27060, 17414, 223, 8920, 29112, 17572, 6543, 15954, 23745, 7697, 21153, 26900, 11014, 30950, 9170, 39112, 7962, 31753, 329, 13160, 34868, 2046, 40879, 37681, 32644, 35969, 5125, 195, 7800, 25273, 27856, 8293, 4032, 38397, 20323, 34661, 34727, 37367, 20084, 25101, 20976, 19820, 14541, 8186, 40713, 31041, 12810, 20868, 15500, 5585, 18595, 6502, 14314, 40067, 5201, 3235, 6517, 14914, 23106, 23098, 22778, 9978, 30471, 30971, 10010, 31751, 249, 9960, 29751, 2171, 4918, 32876, 4288, 7676, 20313, 34261, 18727, 11782, 20709, 9140, 37912, 923, 36920, 2204, 6238, 3754, 27277, 26094, 19735, 11141, 36030, 7565, 15873, 20505, 980, 39200, 11482, 8709, 20672, 7660, 19673, 8661, 18752, 12782, 19748, 11661, 15869, 20345, 35541, 28966, 11732, 18709, 11062, 32870, 4048, 39037, 4962, 34636, 33727, 38328, 17563, 6183, 1554, 21199, 28740, 2692, 25758, 6295, 6034, 36555, 28565, 36653, 32485, 29609, 37452, 23484, 38218, 13163, 34988, 6846, 28074, 17013, 25144, 22696, 6698, 22154, 25979, 15135, 31946, 8049, 35233, 16646, 10464, 8950, 30312, 24611, 1376, 14079, 30667, 38811, 36883, 724, 28960, 11492, 9109, 36672, 33245, 19048, 24622, 1816, 31679, 38330, 17643, 9383, 6671, 21074, 23740, 7497, 13153, 34588, 31807, 2489, 17638, 9183, 39632, 28762, 3572, 19997, 21621, 4659, 22516, 40459, 20881, 16020, 26385, 31375, 26170, 22775, 9858, 25671, 2815, 30678, 39251, 13522, 8387, 7792, 24953, 15056, 28786, 4532, 17436, 1103, 3159, 3477, 16197, 33465, 27848, 7973, 32193, 17929, 20823, 13700, 15507, 5865, 29795, 3931, 34357, 22567, 1538, 20559, 3140, 2717, 26758, 5334, 8555, 14512, 7026, 35274, 18286, 35103, 11446, 7269, 4033, 38437, 21923, 16739, 14184, 34867, 2006, 39279, 14642, 12226, 38469, 23203, 26978, 14134, 32867, 3928, 34237, 17767, 14343, 266, 10640, 15990, 25185, 24336, 31337, 24650, 2936, 35518, 28046, 15893, 21305, 32980, 8448, 10232, 40631, 27761, 4493, 15876, 20625, 5780, 26395, 31775, 1209, 7399, 9233, 671, 26840, 8614, 16872, 19504, 1901, 35079, 10486, 9830, 24551, 39937}
var W_rev = [1024]RINGELT{1, 39937, 24551, 9830, 10486, 35079, 1901, 19504, 16872, 8614, 26840, 671, 9233, 7399, 1209, 31775, 26395, 5780, 20625, 15876, 4493, 27761, 40631, 10232, 8448, 32980, 21305, 15893, 28046, 35518, 2936, 24650, 31337, 24336, 25185, 15990, 10640, 266, 14343, 17767, 34237, 3928, 32867, 14134, 26978, 23203, 38469, 12226, 14642, 39279, 2006, 34867, 14184, 16739, 21923, 38437, 4033, 7269, 11446, 35103, 18286, 35274, 7026, 14512, 8555, 5334, 26758, 2717, 3140, 20559, 1538, 22567, 34357, 3931, 29795, 5865, 15507, 13700, 20823, 17929, 32193, 7973, 27848, 33465, 16197, 3477, 3159, 1103, 17436, 4532, 28786, 15056, 24953, 7792, 8387, 13522, 39251, 30678, 2815, 25671, 9858, 22775, 26170, 31375, 26385, 16020, 20881, 40459, 22516, 4659, 21621, 19997, 3572, 28762, 39632, 9183, 17638, 2489, 31807, 34588, 13153, 7497, 23740, 21074, 6671, 9383, 17643, 38330, 31679, 1816, 24622, 19048, 33245, 36672, 9109, 11492, 28960, 724, 36883, 38811, 30667, 14079, 1376, 24611, 30312, 8950, 10464, 16646, 35233, 8049, 31946, 15135, 25979, 22154, 6698, 22696, 25144, 17013, 28074, 6846, 34988, 13163, 38218, 23484, 37452, 29609, 32485, 36653, 28565, 36555, 6034, 6295, 25758, 2692, 28740, 21199, 1554, 6183, 17563, 38328, 33727, 34636, 4962, 39037, 4048, 32870, 11062, 18709, 11732, 28966, 35541, 20345, 15869, 11661, 19748, 12782, 18752, 8661, 19673, 7660, 20672, 8709, 11482, 39200, 980, 20505, 15873, 7565, 36030, 11141, 19735, 26094, 27277, 3754, 6238, 2204, 36920, 923, 37912, 9140, 20709, 11782, 18727, 34261, 20313, 7676, 4288, 32876, 4918, 2171, 29751, 9960, 249, 31751, 10010, 30971, 30471, 9978, 22778, 23098, 23106, 14914, 6517, 3235, 5201, 40067, 14314, 6502, 18595, 5585, 15500, 20868, 12810, 31041, 40713, 8186, 14541, 19820, 20976, 25101, 20084, 37367, 34727, 34661, 20323, 38397, 4032, 8293, 27856, 25273, 7800, 195, 5125, 35969, 32644, 37681, 40879, 2046, 34868, 13160, 329, 31753, 7962, 39112, 9170, 30950, 11014, 26900, 21153, 7697, 23745, 15954, 6543, 17572, 29112, 8920, 223, 17414, 27060, 21157, 3601, 40027, 14313, 7526, 35005, 36716, 5014, 26750, 10909, 11537, 23841, 40533, 28662, 19149, 11743, 17702, 18875, 5592, 8332, 28881, 40659, 22521, 40500, 21493, 28186, 15041, 40313, 8176, 24781, 20076, 4598, 2163, 37943, 18357, 3531, 29785, 16105, 15763, 38283, 38846, 35788, 13183, 17738, 22972, 29247, 34524, 37728, 33712, 9035, 5346, 14470, 10602, 39178, 23508, 12876, 4418, 22639, 1590, 10280, 257, 23559, 1613, 27689, 32437, 3883, 37986, 15286, 35199, 1904, 16432, 8603, 38104, 17337, 23986, 14936, 24950, 10864, 16656, 24993, 7793, 7363, 38073, 8120, 203, 37894, 27572, 29362, 39647, 34784, 17254, 27056, 25253, 28280, 707, 13330, 31054, 27401, 40622, 19448, 33255, 26432, 8853, 27870, 10937, 23826, 14932, 29046, 35543, 18297, 24010, 31321, 40720, 1018, 22554, 6708, 12456, 24888, 33391, 10051, 29948, 13037, 3398, 2133, 27702, 19125, 36319, 1932, 28721, 40655, 26617, 24218, 23134, 27203, 38569, 32709, 12082, 39215, 26581, 20121, 40440, 1011, 29722, 39656, 25568, 33408, 33604, 37705, 16303, 17816, 25022, 19058, 23005, 36416, 25487, 34430, 11101, 19734, 27118, 2726, 34885, 36713, 8086, 35019, 22380, 21040, 526, 34830, 11111, 9494, 26862, 19104, 16862, 18854, 27096, 25254, 27256, 25258, 23160, 579, 21519, 1562, 38952, 9166, 35046, 35693, 28541, 20170, 31225, 16141, 19860, 20977, 24077, 3674, 6236, 4252, 28779, 22224, 16940, 20904, 16907, 13735, 25944, 17033, 7594, 6334, 26783, 18078, 2500, 20543, 17922, 39361, 40921, 40960, 1024, 16410, 31131, 30475, 5882, 39060, 21457, 24089, 32347, 14121, 40290, 31728, 33562, 39752, 9186, 14566, 35181, 20336, 25085, 36468, 13200, 330, 30729, 32513, 7981, 19656, 25068, 12915, 5443, 38025, 16311, 9624, 16625, 15776, 24971, 30321, 40695, 26618, 23194, 6724, 37033, 8094, 26827, 13983, 17758, 2492, 28735, 26319, 1682, 38955, 6094, 26777, 24222, 19038, 2524, 36928, 33692, 29515, 5858, 22675, 5687, 33935, 26449, 32406, 35627, 14203, 38244, 37821, 20402, 39423, 18394, 6604, 37030, 11166, 35096, 25454, 27261, 20138, 23032, 8768, 32988, 13113, 7496, 24764, 37484, 37802, 39858, 23525, 36429, 12175, 25905, 16008, 33169, 32574, 27439, 1710, 10283, 38146, 15290, 31103, 18186, 14791, 9586, 14576, 24941, 20080, 502, 18445, 36302, 19340, 20964, 37389, 12199, 1329, 31778, 23323, 38472, 9154, 6373, 27808, 33464, 17221, 19887, 34290, 31578, 23318, 2631, 9282, 39145, 16339, 21913, 7716, 4289, 31852, 29469, 12001, 40237, 4078, 2150, 10294, 26882, 39585, 16350, 10649, 32011, 30497, 24315, 5728, 32912, 9015, 25826, 14982, 18807, 34263, 18265, 15817, 23948, 12887, 34115, 5973, 27798, 2743, 17477, 3509, 11352, 8476, 4308, 12396, 4406, 34927, 34666, 15203, 38269, 12221, 19762, 39407, 34778, 23398, 2633, 7234, 6325, 35999, 1924, 36913, 8091, 29899, 22252, 29229, 11995, 5420, 20616, 25092, 29300, 21213, 28179, 22209, 32300, 21288, 33301, 20289, 32252, 29479, 1761, 39981, 20456, 25088, 33396, 4931, 29820, 21226, 14867, 13684, 37207, 34723, 38757, 4041, 40038, 3049, 31821, 20252, 29179, 22234, 6700, 20648, 33285, 36673, 8085, 36043, 38790, 11210, 31001, 40712, 9210, 30951, 9990, 10490, 30983, 18183, 17863, 17855, 26047, 34444, 37726, 35760, 894, 26647, 34459, 22366, 35376, 25461, 20093, 28151, 9920, 248, 32775, 26420, 21141, 19985, 15860, 20877, 3594, 6234, 6300, 20638, 2564, 36929, 32668, 13105, 15688, 33161, 40766, 35836, 4992, 8317, 3280, 82, 38915, 6093, 27801, 40632, 9208, 32999, 1849, 31791, 10011, 29947, 14061, 19808, 33264, 17216, 25007, 34418, 23389, 11849, 32041, 40738, 23547, 13901, 19804, 37360, 934, 26648, 33435, 5956, 4245, 35947, 14211, 30052, 29424, 17120, 428, 12299, 21812, 29218, 23259, 22086, 35369, 32629, 12080, 302, 18440, 461, 19468, 12775, 25920, 648, 32785, 16180, 20885, 36363, 38798, 3018, 22604, 37430, 11176, 24856, 25198, 2678, 2115, 5173, 27778, 23223, 17989, 11714, 6437, 3233, 7249, 31926, 35615, 26491, 30359, 1783, 17453, 28085, 36543, 18322, 39371, 30681, 40704, 17402, 39348, 13272, 8524, 37078, 2975, 25675, 5762, 39057, 24529, 32358, 2857, 23624, 16975, 26025, 16011, 30097, 24305, 15968, 33168, 33598, 2888, 32841, 40758, 3067, 13389, 11599, 1314, 6177, 23707, 13905, 15708, 12681, 40254, 27631, 9907, 13560, 339, 21513, 7706, 14529, 32108, 13091, 30024, 17135, 26029, 11915, 5418, 22664, 16951, 9640, 241, 39943, 18407, 34253, 28505, 16073, 7570, 30910, 11013, 27924, 37563, 38828, 13259, 21836, 4642, 39029, 12240, 306, 14344, 16743, 17827, 13758, 2392, 8252, 28879, 1746, 14380, 20840, 521, 39950, 11239, 1305, 15393, 7553, 7357, 3256, 24658, 23145, 15939, 21903, 17956, 4545, 15474, 6531, 29860, 21227, 13843, 38235, 6076, 4248, 32875, 5942, 18581, 19921, 40435, 6131, 29850, 31467, 14099, 21857, 24099, 22107, 13865, 15707, 13705, 15703, 17801, 40382, 19442, 39399, 2009, 31795, 5915, 5268, 12420, 20791, 9736, 24820, 21101, 19984, 16884, 37287, 34725, 36709, 12182, 18737, 24021, 20057, 24054, 27226, 15017, 23928, 33367, 34627, 14178, 22883, 38461, 20418, 23039, 1600, 40}
var W_sqrt = [512]RINGELT{16186, 33025, 10248, 310, 12400, 4468, 14876, 21586, 3259, 7477, 12353, 2588, 21598, 3739, 26677, 2094, 1838, 32559, 32569, 32969, 8008, 33593, 32968, 7968, 31993, 9929, 28511, 34493, 28007, 14333, 40827, 35601, 31366, 25810, 8375, 7312, 5753, 25315, 29536, 34532, 29567, 35772, 38206, 12683, 15788, 17105, 28824, 6052, 37275, 16404, 784, 31360, 25570, 39736, 32922, 6128, 40315, 15121, 31386, 26610, 40375, 17521, 4503, 16276, 36625, 31365, 25770, 6775, 25234, 26296, 27815, 6653, 20354, 35901, 2405, 14278, 38627, 29523, 34012, 8767, 22992, 18538, 4222, 5036, 37596, 29244, 22852, 12938, 25988, 15495, 5385, 10595, 14190, 35107, 11606, 13669, 14267, 38187, 11923, 26349, 29935, 9531, 12591, 12108, 33749, 39208, 11802, 21509, 179, 7160, 40634, 27881, 9293, 3071, 40918, 39241, 13122, 33348, 23168, 25578, 40056, 4761, 26596, 39815, 36082, 9645, 17151, 30664, 38691, 32083, 13529, 8667, 18992, 22382, 35099, 11286, 869, 34760, 38687, 31923, 7129, 39394, 19242, 32382, 25489, 36496, 26205, 24175, 24897, 12816, 21108, 25100, 20936, 18220, 32463, 28729, 2252, 8158, 39593, 27202, 23094, 22618, 3578, 20237, 31221, 20010, 22141, 25459, 35296, 19166, 29342, 26772, 5894, 30955, 9370, 6151, 274, 10960, 28790, 4692, 23836, 11337, 2909, 34438, 25807, 8255, 2512, 18558, 5022, 37036, 6844, 27994, 13813, 20027, 22821, 11698, 17349, 38584, 27803, 6173, 1154, 5199, 3155, 3317, 9797, 23231, 28098, 17973, 22583, 2178, 5198, 3115, 1717, 27719, 2813, 30598, 36051, 8405, 8512, 12792, 20148, 27661, 493, 19720, 10541, 12030, 30629, 37291, 17044, 26384, 31335, 24570, 40697, 30401, 28171, 20893, 16500, 4624, 21116, 25420, 33736, 38688, 31963, 8729, 21472, 39660, 29882, 7411, 9713, 19871, 16581, 7864, 27833, 7373, 8193, 32, 1280, 10239, 40911, 38961, 1922, 35919, 3125, 2117, 2758, 28398, 29973, 11051, 32430, 27409, 31374, 26130, 21175, 27780, 5253, 5315, 7795, 25073, 19856, 15981, 24825, 9936, 28791, 4732, 25436, 34376, 23327, 31938, 7729, 22433, 37139, 10964, 28950, 11092, 34070, 11087, 33870, 3087, 597, 23880, 13097, 32348, 24129, 23057, 21138, 26300, 27975, 13053, 30588, 35651, 33366, 23888, 13417, 4187, 3636, 22557, 1138, 4559, 18516, 3342, 10797, 22270, 30619, 36891, 1044, 799, 31960, 8609, 16672, 11504, 9589, 14911, 22986, 18298, 35583, 30646, 37971, 3283, 8437, 9792, 23031, 20098, 25661, 2415, 14678, 13666, 14147, 33387, 24728, 6056, 37435, 22804, 11018, 31110, 15570, 8385, 7712, 21753, 9939, 28911, 9532, 12631, 13708, 15827, 18665, 9302, 3431, 14357, 826, 33040, 10848, 24310, 30297, 24011, 18337, 37143, 11124, 35350, 21326, 33820, 1087, 2519, 18838, 16222, 34465, 26887, 10494, 10150, 37351, 19444, 40462, 21001, 20820, 13580, 10707, 18670, 9502, 11431, 6669, 20994, 20540, 2380, 13278, 39588, 27002, 15094, 30306, 24371, 32737, 39689, 31042, 12850, 22468, 38539, 26003, 16095, 29385, 28492, 33733, 38568, 27163, 21534, 1179, 6199, 2194, 5838, 28715, 1692, 26719, 3774, 28077, 17133, 29944, 9891, 26991, 14654, 12706, 16708, 12944, 26228, 25095, 20736, 10220, 40151, 8561, 14752, 16626, 9664, 17911, 20103, 25861, 10415, 6990, 33834, 1647, 24919, 13696, 15347, 40426, 19561, 4181, 3396, 12957, 26748, 4934, 33516, 29888, 7651, 19313, 35222, 16206, 33825, 1287, 10519, 11150, 36390, 21965, 18419, 40423, 19441, 40342, 16201, 33625, 34248, 18207, 31943, 7929, 30433, 29451, 31132, 16450, 2624, 23038, 20378, 36861, 40805, 34721, 37127, 10484, 9750, 21351, 34820, 126, 5040, 37756, 35644, 33086, 12688, 15988, 25105, 21136, 26220}
var W_sqrt_rev = [512]RINGELT{14741, 19825, 15856, 24973, 28273, 7875, 5317, 3205, 35921, 40835, 6141, 19610, 31211, 30477, 3834, 6240, 156, 4100, 20583, 17923, 38337, 24511, 9829, 11510, 10528, 33032, 9018, 22754, 6713, 7336, 24760, 619, 21520, 538, 22542, 18996, 4571, 29811, 30442, 39674, 7136, 24755, 5739, 21648, 33310, 11073, 7445, 36027, 14213, 28004, 37565, 36780, 21400, 535, 25614, 27265, 16042, 39314, 7127, 33971, 30546, 15100, 20858, 23050, 31297, 24335, 26209, 32400, 810, 30741, 20225, 15866, 14733, 28017, 24253, 28255, 26307, 13970, 31070, 11017, 23828, 12884, 37187, 14242, 39269, 12246, 35123, 38767, 34762, 39782, 19427, 13798, 2393, 7228, 12469, 11576, 24866, 14958, 2422, 18493, 28111, 9919, 1272, 8224, 16590, 10655, 25867, 13959, 1373, 27683, 38581, 20421, 19967, 34292, 29530, 31459, 22291, 30254, 27381, 20141, 19960, 499, 21517, 3610, 30811, 30467, 14074, 6496, 24739, 22123, 38442, 39874, 7141, 19635, 5611, 29837, 3818, 22624, 16950, 10664, 16651, 30113, 7921, 40135, 26604, 37530, 31659, 22296, 25134, 27253, 28330, 31429, 12050, 31022, 19208, 33249, 32576, 25391, 9851, 29943, 18157, 3526, 34905, 16233, 7574, 26814, 27295, 26283, 38546, 15300, 20863, 17930, 31169, 32524, 37678, 2990, 10315, 5378, 22663, 17975, 26050, 31372, 29457, 24289, 32352, 9001, 40162, 39917, 4070, 10342, 18691, 30164, 37619, 22445, 36402, 39823, 18404, 37325, 36774, 27544, 17073, 7595, 5310, 10373, 27908, 12986, 14661, 19823, 17904, 16832, 8613, 27864, 17081, 40364, 37874, 7091, 29874, 6891, 29869, 12011, 29997, 3822, 18528, 33232, 9023, 17634, 6585, 15525, 36229, 12170, 31025, 16136, 24980, 21105, 15888, 33166, 35646, 35708, 13181, 19786, 14831, 9587, 13552, 8531, 29910, 10988, 12563, 38203, 38844, 37836, 5042, 39039, 2000, 50, 30722, 39681, 40929, 32768, 33588, 13128, 33097, 24380, 21090, 31248, 33550, 11079, 1301, 19489, 32232, 8998, 2273, 7225, 15541, 19845, 36337, 24461, 20068, 12790, 10560, 264, 16391, 9626, 14577, 23917, 3670, 10332, 28931, 30420, 21241, 40468, 13300, 20813, 28169, 32449, 32556, 4910, 10363, 38148, 13242, 39244, 37846, 35763, 38783, 18378, 22988, 12863, 17730, 31164, 37644, 37806, 35762, 39807, 34788, 13158, 2377, 23612, 29263, 18140, 20934, 27148, 12967, 34117, 3925, 35939, 22403, 38449, 32706, 15154, 6523, 38052, 29624, 17125, 36269, 12171, 30001, 40687, 34810, 31591, 10006, 35067, 14189, 11619, 21795, 5665, 15502, 18820, 20951, 9740, 20724, 37383, 18343, 17867, 13759, 1368, 32803, 38709, 12232, 8498, 22741, 20025, 15861, 19853, 28145, 16064, 16786, 14756, 4465, 15472, 8579, 21719, 1567, 33832, 9038, 2274, 6201, 40092, 29675, 5862, 18579, 21969, 32294, 27432, 8878, 2270, 10297, 23810, 31316, 4879, 1146, 14365, 36200, 905, 15383, 17793, 7613, 27839, 1720, 43, 37890, 31668, 13080, 327, 33801, 40782, 19452, 29159, 1753, 7212, 28853, 28370, 31430, 11026, 14612, 29038, 2774, 26694, 27292, 29355, 5854, 26771, 30366, 35576, 25466, 14973, 28023, 18109, 11717, 3365, 35925, 36739, 22423, 17969, 32194, 6949, 11438, 2334, 26683, 38556, 5060, 20607, 34308, 13146, 14665, 15727, 34186, 15191, 9596, 4336, 24685, 36458, 23440, 586, 14351, 9575, 25840, 646, 34833, 8039, 1225, 15391, 9601, 40177, 24557, 3686, 34909, 12137, 23856, 25173, 28278, 2755, 5189, 11394, 6429, 11425, 15646, 35208, 33649, 32586, 15151, 9595, 5360, 134, 26628, 12954, 6468, 12450, 31032, 8968, 32993, 7993, 7368, 32953, 7992, 8392, 8402, 39123, 38867, 14284, 37222, 19363, 38373, 28608, 33484, 37702, 19375, 26085, 36493, 28561, 40651, 30713, 7936, 24775}
var n RINGELT = 1024
var q RINGELT = 40961
var MISPOWEROFTWO RINGELT = 1
/*
We use Gentleman-Sande, decimation-in-frequency FFT, for the forward FFT.
We premultiply x by the 2n'th roots of unity to affect a Discrete Weighted Fourier Transform,
so when we apply pointwise multiplication we obtain the negacyclic convolution, i.e. multiplication
modulo x^n+1.
Note that we will not perform the usual scambling / bit-reversal procedure here because we will invert
the fourier transform using decimation-in-time.
*/
func FFT_twisted_forward_1024_40961(x []RINGELT) {
var index, step RINGELT
var i, j, m RINGELT
var t0, t1 RINGELT
//Pre multiplication for twisted FFT
j = 0
for i = 0; i < n>>1; i++ {
//MUL_MOD(x[j], x[j], W[i], q);
x[j] = RINGELT((FFTLONG(x[j]) * FFTLONG(W[i])) % FFTLONG(q))
j++
//MUL_MOD(x[j], x[j], W_sqrt[i], q);
x[j] = RINGELT((FFTLONG(x[j]) * FFTLONG(W_sqrt[i])) % FFTLONG(q))
j++
}
step = 1
for m = n >> 1; m >= 1; m = m >> 1 {
index = 0
for j = 0; j < m; j++ {
for i = j; i < n; i += (m << 1) {
//ADD_MOD(t0, x[i], x[i+m], q);
t0 = x[i] + x[i+m]
if t0 >= q {
t0 = t0 - q
}
//ADD(t1, x[i], q - x[i+m]);
t1 = x[i] + (q - x[i+m])
//MUL_MOD(x[i+m], t1, W[index], q);
x[i+m] = RINGELT((FFTLONG(t1) * FFTLONG(W[index])) % FFTLONG(q))
x[i] = t0
}
//SUB_MODn(index, index, step);
index = index + (n - (step))
if index >= n {
index = index - n
}
}
step = step << 1
}
}
/*
We use Cooley-Tukey, decimation-in-time FFT, for the inverse FFT.
We postmultiply x by the inverse of the 2n'th roots of unity * n^-1 to affect a Discrete Weighted Fourier Transform,
so when we apply pointwise multiplication we obtain the negacyclic convolution, i.e. multiplication
modulo x^n+1.
Note that we will not perform the usual scambling / bit-reversal procedure here because we will the forward
fourier transform is using decimation-in-frequency.
*/
func FFT_twisted_backward_1024_40961(x []RINGELT) {
var index, step RINGELT
var i, j, m RINGELT
var t0, t1 RINGELT
step = n >> 1
for m = 1; m < n; m = m << 1 {
index = 0
for j = 0; j < m; j++ {
for i = j; i < n; i += (m << 1) {
t0 = x[i]
//t0 -= (t0 >= q) ? q : 0;
if t0 >= q { // do the above step with a branch, this causes us a branch miss
t0 = t0 - q
}
//MUL_MOD(t1, x[i+m], W_rev[index], q);
t1 = RINGELT((FFTLONG(x[i+m]) * FFTLONG(W_rev[index])) % FFTLONG(q))
//ADD(x[i], t0, t1);
x[i] = t0 + t1
//ADD(x[i+m], t0, q - t1);
x[i+m] = (t0) + (q - t1)
}
//SUB_MODn(index, index, step);
index = index + (n - (step))
if index >= n {
index = index - n
}
}
step = step >> 1
}
//Post multiplication for twisted FFT
j = 0
for i = 0; i < n>>1; i++ {
//MUL_MOD(x[j], x[j], W_rev[i], q);
x[j] = RINGELT((FFTLONG(x[j]) * FFTLONG(W_rev[i])) % FFTLONG(q))
j++
//MUL_MOD(x[j], x[j], W_sqrt_rev[i], q);
x[j] = RINGELT((FFTLONG(x[j]) * FFTLONG(W_sqrt_rev[i])) % FFTLONG(q))
j++
}
}
const m RINGELT = 1024
const M = m
const muwords RINGELT = 16 /* key (mu) is m bits */
const Muwords RINGELT = 16
//var q RINGELT = 40961
const qmod4 RINGELT = 1
const B RINGELT = 5
const BB RINGELT = 11
const LOG2B RINGELT = 4
const BMASK RINGELT = 0xf
var small_coeff_table = [11]RINGELT{40956, 40957, 40958, 40959, 40960, 0, 1, 2, 3, 4, 5}
const q_1_4, q_2_4, q_3_4 RINGELT = 10240, 20480, 30721
const r0_l, r0_u, r1_l, r1_u RINGELT = 15360, 35841, 5119, 25601
func FFT_Forward(x []RINGELT) {
FFT_twisted_forward_1024_40961(x)
}
func FFT_Backward(x []RINGELT) {
FFT_twisted_backward_1024_40961(x)
for i := RINGELT(0); i < m; i++ {
//MUL_MOD((_x)[_i], (_x)[_i], 40921, (q));\
x[i] = RINGELT((FFTLONG(x[i]) * FFTLONG(40921)) % FFTLONG(q))
}
}
/* Public Parameter a. Each a parameter rejection sampled from non-overlapping
* segments of the digits of e.
* Note that this is held in the FFT / CRT basis.*/
var a = [1024]RINGELT{
0x678B, 0x4782, 0x2A5E, 0x0D10, 0x8D67, 0x0D4F, 0x80F3, 0x3D02,
0x342A, 0x2179, 0x805F, 0x2A12, 0x5776, 0x5C7C, 0x26D7, 0x3F1A,
0x5304, 0x6507, 0x90C9, 0x6119, 0x6EAF, 0x2F19, 0x05D3, 0x839B,
0x7987, 0x856A, 0x834F, 0x802E, 0x1D79, 0x71DC, 0x9F6C, 0x6000,
0x31C9, 0x02B2, 0x8519, 0x0AF0, 0x2C6E, 0x50FA, 0x0655, 0x919A,
0x2ADD, 0x6F1F, 0x2D18, 0x2CD8, 0x358C, 0x4D7B, 0x2C71, 0x7863,
0x5D5A, 0x2D75, 0x3A6C, 0x895D, 0x8197, 0x974E, 0x000C, 0x15BF,
0x37F2, 0x7AA2, 0x6281, 0x51D2, 0x3A9D, 0x3079, 0x8866, 0x3009,
0x0BD8, 0x9576, 0x34A5, 0x9976, 0x81BE, 0x6A5F, 0x1A9A, 0x0D92,
0x4253, 0x9F7C, 0x9AAF, 0x8370, 0x57D9, 0x4CFD, 0x83BC, 0x59CC,
0x95CF, 0x496D, 0x6A2B, 0x1C97, 0x2816, 0x51EE, 0x3C4B, 0x39DD,
0x05A5, 0x1977, 0x0F25, 0x3EDC, 0x8B65, 0x02E3, 0x479B, 0x0077,
0x70CB, 0x71D6, 0x56A3, 0x83C7, 0x6FB6, 0x083E, 0x2A7B, 0x1D6F,
0x6DD7, 0x3E9A, 0x3E58, 0x9EE3, 0x7015, 0x4C4F, 0x493D, 0x1401,
0x1D52, 0x9542, 0x8E22, 0x7812, 0x8CD1, 0x16B8, 0x9143, 0x7822,
0x35D0, 0x3DD7, 0x7263, 0x849A, 0x6EE2, 0x473F, 0x8F19, 0x2D21,
0x3E12, 0x67A3, 0x5E3D, 0x415A, 0x97A0, 0x5A8C, 0x195F, 0x3B80,
0x4D56, 0x6AB0, 0x07DA, 0x1ADA, 0x4BF1, 0x19EA, 0x2584, 0x0CB8,
0x5C06, 0x6392, 0x09FD, 0x4944, 0x83BC, 0x36F5, 0x2CE3, 0x12A3,
0x1DFF, 0x970A, 0x6884, 0x72E9, 0x3D9A, 0x3A38, 0x2F8A, 0x1394,
0x00C6, 0x7BFA, 0x067A, 0x8610, 0x1378, 0x3F6D, 0x526D, 0x971B,
0x7CB8, 0x985F, 0x752C, 0x0FA7, 0x3545, 0x371A, 0x91DE, 0x82D5,
0x428A, 0x9832, 0x20F4, 0x7A76, 0x8B58, 0x8ABB, 0x6FC8, 0x1FBE,
0x2C7F, 0x1426, 0x5DA1, 0x4D8B, 0x5AF1, 0x9D85, 0x03C8, 0x4D45,
0x506C, 0x50BD, 0x862F, 0x0EF0, 0x5F9D, 0x621C, 0x8650, 0x52C9,
0x6E13, 0x5152, 0x6795, 0x9E35, 0x8D4E, 0x37C9, 0x908B, 0x2FD5,
0x671E, 0x0CAD, 0x8776, 0x6F6E, 0x849A, 0x9EF7, 0x7873, 0x7630,
0x82ED, 0x3B52, 0x214D, 0x78C7, 0x63A7, 0x69AC, 0x4ABF, 0x7B4F,
0x3E83, 0x4430, 0x9ACA, 0x801A, 0x2B18, 0x2B92, 0x9D24, 0x8811,
0x7CFD, 0x3A18, 0x577E, 0x11CA, 0x99EB, 0x6826, 0x01BB, 0x00D9,
0x5263, 0x220C, 0x917E, 0x726D, 0x2E7B, 0x98AB, 0x1981, 0x3001,
0x365E, 0x4689, 0x276B, 0x5FD4, 0x4DA0, 0x4F50, 0x0E91, 0x4184,
0x5C98, 0x7997, 0x6B24, 0x0BF7, 0x384C, 0x6BB6, 0x33B1, 0x4601,
0x9146, 0x5678, 0x9B14, 0x96AC, 0x12AF, 0x0F36, 0x9B60, 0x1A36,
0x727C, 0x57F7, 0x65BA, 0x5F2A, 0x88FD, 0x8913, 0x3516, 0x29EF,
0x3655, 0x2E9A, 0x5D74, 0x084F, 0x4930, 0x8B20, 0x1BD5, 0x1935,
0x0CEE, 0x51DF, 0x740E, 0x0A1D, 0x994E, 0x6F95, 0x5616, 0x8493,
0x44A3, 0x6D0C, 0x3D41, 0x60B0, 0x43B5, 0x9419, 0x25E4, 0x1F44,
0x6CAF, 0x7FD7, 0x75A8, 0x53BB, 0x7D92, 0x54DF, 0x8BF3, 0x76CC,
0x866F, 0x8A9C, 0x3F29, 0x3281, 0x6CA0, 0x1229, 0x6B05, 0x12CA,
0x6A15, 0x8C2B, 0x7C51, 0x8087, 0x5C3E, 0x1908, 0x46B6, 0x41E5,
0x22C4, 0x8FD6, 0x87D6, 0x1BFE, 0x0CEF, 0x9DDB, 0x84F3, 0x3510,
0x3CD4, 0x5014, 0x59D0, 0x4792, 0x7199, 0x07D9, 0x3A56, 0x5B89,
0x563B, 0x1DB3, 0x08B2, 0x2B0B, 0x3C21, 0x936F, 0x4FFA, 0x75D4,
0x03C1, 0x5322, 0x6BA2, 0x31EB, 0x055F, 0x90FA, 0x1A34, 0x1297,
0x3FCC, 0x6949, 0x5486, 0x6194, 0x7343, 0x8617, 0x6F3E, 0x0300,
0x5C5F, 0x78DD, 0x9465, 0x72AD, 0x293D, 0x70C4, 0x23C6, 0x842C,
0x337F, 0x29AE, 0x424B, 0x715F, 0x0364, 0x33AE, 0x42AE, 0x0C07,
0x6FF4, 0x046E, 0x027E, 0x9AF9, 0x0A7F, 0x616B, 0x15BE, 0x09E0,
0x0D85, 0x0708, 0x3B43, 0x7C48, 0x9D10, 0x4A0C, 0x6800, 0x8778,
0x9636, 0x40AA, 0x4E6F, 0x3D4C, 0x305C, 0x54F4, 0x944E, 0x6BCA,
0x87A3, 0x421D, 0x5358, 0x8C15, 0x9AB3, 0x3FC0, 0x4561, 0x1575,
0x9FCB, 0x7303, 0x7B5F, 0x591B, 0x6868, 0x4A00, 0x3670, 0x01B4,
0x715F, 0x47A7, 0x2F8B, 0x9F8D, 0x4F9B, 0x5EE5, 0x7482, 0x1C8C,
0x9F39, 0x4ABC, 0x9893, 0x9365, 0x8A63, 0x4665, 0x2326, 0x0569,
0x9B5B, 0x40FB, 0x8B83, 0x1452, 0x8FD6, 0x9570, 0x1365, 0x46DD,
0x284C, 0x3640, 0x88A3, 0x30F4, 0x61D3, 0x9963, 0x6390, 0x4FE5,
0x641F, 0x791D, 0x3D41, 0x73DE, 0x5333, 0x187D, 0x1526, 0x386F,
0x48CC, 0x3A4B, 0x61DC, 0x87A3, 0x4171, 0x02FB, 0x2B27, 0x9A37,
0x4A61, 0x54BB, 0x5825, 0x718D, 0x238A, 0x18D1, 0x1592, 0x31CC,
0x3807, 0x4032, 0x750A, 0x88BB, 0x3489, 0x9E1F, 0x0B84, 0x35A0,
0x6A40, 0x1748, 0x8A91, 0x9CDA, 0x3399, 0x3D92, 0x05DB, 0x1BB2,
0x3E96, 0x76B2, 0x3114, 0x431C, 0x37FE, 0x566D, 0x2145, 0x5C79,
0x7340, 0x22C4, 0x936D, 0x360B, 0x876A, 0x6E55, 0x80DA, 0x9C5F,
0x6B67, 0x7A23, 0x86C1, 0x2E55, 0x7700, 0x363C, 0x1D9C, 0x8186,
0x4D6D, 0x40F7, 0x1D65, 0x5807, 0x5C13, 0x733F, 0x4B0F, 0x0289,
0x4C9F, 0x9891, 0x8339, 0x8F13, 0x19C4, 0x558B, 0x4B3F, 0x256D,
0x3DD9, 0x0989, 0x61C4, 0x9836, 0x18FA, 0x7E6E, 0x3145, 0x9A4D,
0x7ACD, 0x22FC, 0x523D, 0x46D2, 0x913B, 0x1868, 0x2FB1, 0x8EE9,
0x81E2, 0x8FAF, 0x652A, 0x06E7, 0x0B89, 0x1AB4, 0x9072, 0x81D9,
0x0C9A, 0x5D74, 0x29E6, 0x4B04, 0x6E08, 0x1675, 0x79B8, 0x2E98,
0x6FFE, 0x6E1B, 0x6CCA, 0x1A7F, 0x5AB9, 0x4A36, 0x5946, 0x8A57,
0x295E, 0x9A46, 0x5F1B, 0x6F89, 0x06F8, 0x51E2, 0x0E8D, 0x9D3F,
0x1B3C, 0x443E, 0x676A, 0x1270, 0x9178, 0x8F2C, 0x8E9D, 0x1F0C,
0x5F02, 0x2E44, 0x7F51, 0x27F7, 0x4A1D, 0x0D21, 0x7343, 0x14E1,
0x8A81, 0x18F6, 0x2640, 0x206B, 0x1751, 0x7C84, 0x4F44, 0x846F,
0x47FA, 0x472E, 0x9C6E, 0x1F49, 0x52AE, 0x5D05, 0x5281, 0x7A1B,
0x48FA, 0x3CD2, 0x75DD, 0x894C, 0x3DC1, 0x009E, 0x5555, 0x4670,
0x4EDB, 0x348C, 0x39E1, 0x1800, 0x0D44, 0x48D3, 0x6B0C, 0x9026,
0x5A22, 0x19B1, 0x054D, 0x018E, 0x773A, 0x4D3A, 0x5C52, 0x4CB1,
0x3877, 0x2B68, 0x1867, 0x5825, 0x6B07, 0x26A4, 0x84A0, 0x0A45,
0x1C05, 0x94E4, 0x44D1, 0x018F, 0x0BEE, 0x742D, 0x50B1, 0x25BC,
0x0D3E, 0x3927, 0x7527, 0x21D6, 0x1F15, 0x56F0, 0x5F87, 0x8E43,
0x0C54, 0x9801, 0x5EED, 0x6892, 0x3457, 0x6F75, 0x63A7, 0x818C,
0x47AF, 0x1FA0, 0x615F, 0x7A22, 0x8BCF, 0x94DD, 0x9DA2, 0x93CB,
0x0FF2, 0x67C6, 0x9803, 0x969F, 0x8FB2, 0x01BC, 0x09A4, 0x88D0,
0x7093, 0x2B2B, 0x5F9F, 0x4DF3, 0x066E, 0x562A, 0x5136, 0x3BD0,
0x1ED7, 0x6EF6, 0x7F9D, 0x7A2A, 0x21C1, 0x369A, 0x9744, 0x6927,
0x2761, 0x2C10, 0x3734, 0x9952, 0x6775, 0x00B1, 0x838B, 0x33C7,
0x1F28, 0x1721, 0x73C8, 0x96C7, 0x0A53, 0x9EC0, 0x3440, 0x1A0B,
0x6D3B, 0x0F11, 0x652B, 0x2C02, 0x0DD7, 0x36ED, 0x8962, 0x047C,
0x3A44, 0x27D6, 0x667E, 0x6392, 0x873A, 0x4A54, 0x075B, 0x8B80,
0x51DF, 0x6A7E, 0x64BE, 0x2B65, 0x3770, 0x9AD8, 0x7E8B, 0x6E20,
0x1F4B, 0x2387, 0x742F, 0x28AC, 0x3143, 0x15E3, 0x1CEA, 0x9CA7,
0x008A, 0x69B4, 0x4EDD, 0x3E6A, 0x46F9, 0x9C0D, 0x5C45, 0x9ABB,
0x6EF5, 0x48FC, 0x0363, 0x1CCD, 0x00CA, 0x2F65, 0x7615, 0x3BC3,
0x1E30, 0x1480, 0x5F16, 0x7F12, 0x5258, 0x33E5, 0x00AB, 0x0D41,
0x2E47, 0x4FC7, 0x441B, 0x1190, 0x4D5C, 0x9401, 0x7BA5, 0x53B0,
0x5058, 0x51F5, 0x1694, 0x55EA, 0x6316, 0x39F1, 0x03C2, 0x5518,
0x3961, 0x2970, 0x07F9, 0x4C0D, 0x205F, 0x8AC5, 0x2F3A, 0x2AAF,
0x8895, 0x3D01, 0x74BF, 0x1EC8, 0x83C3, 0x239F, 0x33BA, 0x0F63,
0x222B, 0x969D, 0x275B, 0x6FEA, 0x39FD, 0x087F, 0x9870, 0x12BB,
0x2108, 0x2517, 0x2261, 0x653E, 0x4168, 0x95CC, 0x6CF3, 0x7788,
0x3C76, 0x3652, 0x13D5, 0x3F49, 0x0C42, 0x9267, 0x7F6C, 0x9C25,
0x2D48, 0x34EB, 0x9AE7, 0x7CCB, 0x7DD6, 0x777C, 0x363F, 0x5971,
0x0BDA, 0x7AAA, 0x754A, 0x9D22, 0x8C89, 0x3213, 0x42E5, 0x0F9F,
0x3A47, 0x037F, 0x7F89, 0x661C, 0x9410, 0x0C4A, 0x23E2, 0x8B86,
0x0B3C, 0x9DC0, 0x3997, 0x02F0, 0x3DBD, 0x964F, 0x17F3, 0x6B53,
0x148E, 0x57E9, 0x1F10, 0x57A1, 0x2A30, 0x5F05, 0x8223, 0x46EE,
0x5725, 0x4576, 0x8F5C, 0x0FEF, 0x20C9, 0x30AE, 0x8379, 0x7D62,
0x0599, 0x2765, 0x5B5B, 0x14D3, 0x5004, 0x67F6, 0x6C8F, 0x34EA,
0x3B7E, 0x8688, 0x0B5F, 0x723E, 0x7079, 0x5232, 0x376F, 0x9415,
0x1905, 0x58BE, 0x96C0, 0x03D2, 0x7B1A, 0x111D, 0x7E79, 0x6137,
0x3C2B, 0x1C3B, 0x9490, 0x0BBB, 0x0BCA, 0x6A44, 0x5DE8, 0x5989,
0x9160, 0x88BC, 0x9D29, 0x8545, 0x4C00, 0x90CE, 0x17F7, 0x6A1E,
0x808F, 0x02DC, 0x1407, 0x5CE1, 0x337C, 0x5199, 0x4E07, 0x03E3,
0x1755, 0x1982, 0x1D89, 0x08DE, 0x664A, 0x0DD0, 0x6D51, 0x0DC4,
0x393C, 0x100B, 0x40CA, 0x72EB, 0x7E64, 0x46A0, 0x3D0F, 0x8837,
0x36C6, 0x3A8A, 0x9832, 0x5647, 0x5945, 0x58A1, 0x314A, 0x78EF,
0x99E8, 0x6DEC, 0x7055, 0x8F4C, 0x9A37, 0x07E3, 0x5567, 0x42D4,
0x5782, 0x6D57, 0x8033, 0x37CA, 0x2290, 0x9146, 0x5CA7, 0x6A2A,
0x097A, 0x76DC, 0x4ED1, 0x8131, 0x8B22, 0x01DF, 0x730A, 0x9E1D,
0x315E, 0x06DB, 0x3538, 0x731B, 0x6E46, 0x9D46, 0x1AE5, 0x9B9A,
0x7E97, 0x4A3D, 0x0416, 0x13AF, 0x61A4, 0x49EA, 0x1747, 0x96C4,
0x85A3, 0x245C, 0x375B, 0x652E, 0x9494, 0x539F, 0x3AF3, 0x0712,
0x370D, 0x38F1, 0x67B5, 0x591E, 0x2E1F, 0x813B, 0x618D, 0x0CEE,
0x69B0, 0x4D15, 0x2143, 0x425C, 0x9A71, 0x0EB8, 0x0DFE, 0x5F53,
0x48B5, 0x8FDB, 0x8FE7, 0x88D7, 0x63CB, 0x0B3A, 0x83FC, 0x7CC4,
}
var rlwe_table = [52][3]uint64{
{0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0x1FFFFFFFFFFFFFFF},
{0xE0C81DA0D6A8BD22, 0x161ABD186DA13542, 0x5CEF2C248806C827},
{0x8D026C4E14BC7408, 0x4344C125B3533F22, 0x9186506BCC065F20},
{0x10AC7CEC7D7E2A3B, 0x5D62CE65E6217813, 0xBAAB5F82BCDB43B3},
{0x709C92996E94D801, 0x1411F551608E4D22, 0xD7D9769FAD23BCB1},
{0x6287D827008404B7, 0x7E1526D618902F20, 0xEA9BE2F4D6DDB5ED},
{0x34CBDC118C15F40E, 0xE7D2A13787E94674, 0xF58A99474919B8C9},
{0xD521F7EBBBE8C3A2, 0xE8A773D9A1EA0AAB, 0xFB5117812753B7B8},
{0xC3D9E58131089A6A, 0x148CB49FF716491B, 0xFE151BD0928596D3},
{0x2E060C4A842A27F6, 0x07E44D009ADB0049, 0xFF487508BA9F7208},
{0xFCEDEFCFAA887582, 0x1A5409BF5D4B039E, 0xFFC16686270CFC82},
{0x4FE22E5DF9FAAC20, 0xFDC99BFE0F991958, 0xFFEC8AC3C159431B},
{0xA36605F81B14FEDF, 0xA6FCD4C13F4AFCE0, 0xFFFA7DF4B6E92C28},
{0x9D1FDCFF97BBC957, 0x4B869C6286ED0BB5, 0xFFFE94BB4554B5AC},
{0x6B3EEBA74AAD104B, 0xEC72329E974D63C7, 0xFFFFAADE1B1CAA95},
{0x48C8DA4009C10760, 0x337F6316C1FF0A59, 0xFFFFEDDC1C6436DC},
{0x84480A71312F35E7, 0xD95E7B2CD6933C97, 0xFFFFFC7C9DC2569A},
{0x23C01DAC1513FA0F, 0x8E0B132AE72F729F, 0xFFFFFF61BC337FED},
{0x90C89D6570165907, 0x05B9D725AAEA5CAD, 0xFFFFFFE6B3CF05F7},
{0x692E2A94C500EC7D, 0x99E8F72C370F27A6, 0xFFFFFFFC53EA610E},
{0x28C2998CEAE37CC8, 0xC6E2F0D7CAFA9AB8, 0xFFFFFFFF841943DE},
{0xC515CF4CB0130256, 0x4745913CB4F9E4DD, 0xFFFFFFFFF12D07EC},
{0x39F0ECEA047D6E3A, 0xEE62D42142AC6544, 0xFFFFFFFFFE63E348},
{0xDF11BB25B50462D6, 0x064A0C6CC136E943, 0xFFFFFFFFFFD762C7},
{0xCDBA0DD69FD2EA0F, 0xC672F3A74DB0F175, 0xFFFFFFFFFFFC5E37},
{0xFDB966A75F3604D9, 0x6ABEF8B144723D83, 0xFFFFFFFFFFFFB48F},
{0x3C4FECBB600740D1, 0x697598CEADD71A15, 0xFFFFFFFFFFFFFA72},
{0x1574CC916D60E673, 0x12F5A30DD99D7051, 0xFFFFFFFFFFFFFFA1},
{0xDD3DCD1B9CB7321D, 0x4016ED3E05883572, 0xFFFFFFFFFFFFFFFA},
{0xB4A4E8CF3DF79A7A, 0xAF22D9AFAD5A73CF, 0xFFFFFFFFFFFFFFFF},
{0x91056A8196F74466, 0xFBF88681905332BA, 0xFFFFFFFFFFFFFFFF},
{0x965B9ED9BD366C04, 0xFFD16385AF29A51F, 0xFFFFFFFFFFFFFFFF},
{0xF05F75D38F2D28A3, 0xFFFE16FF8EA2B60C, 0xFFFFFFFFFFFFFFFF},
{0x77E35C8980421EE8, 0xFFFFEDD3C9DDC7E8, 0xFFFFFFFFFFFFFFFF},
{0x92783617956F140A, 0xFFFFFF63392B6E8F, 0xFFFFFFFFFFFFFFFF},
{0xA536DC994639AD78, 0xFFFFFFFB3592B3D1, 0xFFFFFFFFFFFFFFFF},
{0x8F3A871874DD9FD5, 0xFFFFFFFFDE04A5BB, 0xFFFFFFFFFFFFFFFF},
{0x310DE3650170B717, 0xFFFFFFFFFF257152, 0xFFFFFFFFFFFFFFFF},
{0x1F21A853A422F8CC, 0xFFFFFFFFFFFB057B, 0xFFFFFFFFFFFFFFFF},
{0x3CA9D5C6DB4EE2BA, 0xFFFFFFFFFFFFE5AD, 0xFFFFFFFFFFFFFFFF},
{0xCFD9CE958E59869C, 0xFFFFFFFFFFFFFF81, 0xFFFFFFFFFFFFFFFF},
{0xDB8E1F91D955C452, 0xFFFFFFFFFFFFFFFD, 0xFFFFFFFFFFFFFFFF},
{0xF78EE3A8E99E08C3, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFE1D7858BABDA25, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFFF9E52E32CAB4A, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFFFFEE13217574F, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFFFFFFD04888041, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFFFFFFFF8CD8A56, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFFFFFFFFFF04111, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFFFFFFFFFFFE0C5, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFFFFFFFFFFFFFC7, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
{0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF},
}
/* Auxiliary functions for constant-time comparison
these should be replaced with faster versions also teh system is partiallly constant time
so as leaks are minimal and unpredictable
*/
/*
* Returns 1 if x != 0
* Returns 0 if x == 0
* x and y are arbitrary unsigned 64-bit integers
*/
func ct_isnonzero_u64(x uint64) uint64 {
return (x | -x) >> 63
}
/*
* Returns 1 if x != y
* Returns 0 if x == y
* x and y are arbitrary unsigned 64-bit integers
*/
func ct_ne_u64(x, y uint64) uint64 {
return ((x - y) | (y - x)) >> 63
}
/* Returns 1 if x < y
* Returns 0 if x >= y
* x and y are arbitrary unsigned 64-bit integers
*/
func ct_lt_u64(x, y uint64) uint64 {
return (x ^ ((x ^ y) | ((x - y) ^ y))) >> 63
}
/* Returns 0xFFFF..FFFF if bit != 0
* Returns 0 if bit == 0
*/
func ct_mask_u64(bit uint64) uint64 {
return 0 - ct_isnonzero_u64(bit)
}
/* Returns 0 if a >= b
* Returns 1 if a < b
* Where a and b are both 3-limb 64-bit integers.
* This function runs in constant time.
*/
func cmplt_ct(a, b [3]uint64) int {
r := uint64(0) /* result */
_m := uint64(0) /* mask */
i := int(0)
for i = 2; i >= 0; i-- {
r |= ct_lt_u64(a[i], b[i]) & ^_m // bit wise complement operator in go is ^
_m |= ct_mask_u64(ct_ne_u64(a[i], b[i])) /* stop when a[i] != b[i] */
}
return int(r & 1)
}
func single_sample(in [3]uint64) uint32 {
lower_index := uint32(0)
this_index := uint32(32)
upper_index := uint32(64)
i := int(0)
for i = 0; i <= 6; i++ {
//fmt.Printf("%d : %d\n",i,rlwe_table[this_index][0])
if cmplt_ct(in, rlwe_table[this_index]) == 1 {
upper_index = this_index
} else {
lower_index = this_index
}
this_index = (lower_index + upper_index) / 2
}
return upper_index
}
/*v = e0*b+e1, multiply and add in the ring. All done in the FFT / CRT domain, so point-wise multiplication and addition*/
/*#define POINTWISE_MUL_ADD(v, b, e0, e1) \
do {\
for (uint16_t _i = 0; _i < m; ++_i) {\
MUL_MOD((v)[_i], (e0)[_i], (b)[_i], (q));\
ADD_MOD((v)[_i], (v)[_i], (e1)[_i], (q));\
}\
} while(0)
POINTWISE_MUL_ADD(b, a, s+m, s);
*/
/*v = e0*b+e1, multiply and add in the ring. All done in the FFT / CRT domain, so point-wise multiplication and addition
*/
func POINTWISE_MUL_ADD(noise, private, public []RINGELT) {
for i := RINGELT(0); i < m; i++ {
//MUL_MOD(x[j], x[j], W_rev[i], q);
public[i] = RINGELT((FFTLONG(private[i]) * FFTLONG(a[i])) % FFTLONG(q))
//ADD_MOD(t0, x[i], x[i+m], q);
public[i] = public[i] + noise[i]
if public[i] >= q {
public[i] = public[i] - q
}
}
}
/*v = e0*b, multiply and add in the ring. All done in the FFT / CRT domain, so point-wise multiplication and addition*/
func POINTWISE_MUL(v, b, e0 []RINGELT) {
for i := RINGELT(0); i < m; i++ {
v[i] = RINGELT((FFTLONG(e0[i]) * FFTLONG(b[i])) % FFTLONG(q))
}
}
/*v = e0+b, multiply and add in the ring. All done in the FFT / CRT domain, so point-wise multiplication and addition*/
func POINTWISE_ADD(v, b, e0 []RINGELT) {
for i := RINGELT(0); i < m; i++ {
v[i] = e0[i] + b[i]
if v[i] >= q {
v[i] = v[i] - q
}
}
}
/*Set the m'th coefficient to be 0 in the prime case*/
func sample_secret(s []RINGELT) {
r := uint64(0)
var rnd [3]uint64
ind := RINGELT(0)
//#if MISPOWEROFTWO
for ind < m {
//#else
// while (ind < m-1) {
//#endif
if (ind & 0x3F) == 0 {
//r = RANDOM64
r = Random_Safe_uint64()
//r = uint64(rand.Uint32()) << 32 | uint64(rand.Uint32())
//fmt.Printf("r = %d\n",r)
}
//RANDOM192(rnd);
rnd[0] = Random_Safe_uint64() //uint64(rand.Uint32()) << 32 | uint64(rand.Uint32())
rnd[1] = Random_Safe_uint64() //uint64(rand.Uint32()) << 32 | uint64(rand.Uint32())
rnd[2] = Random_Safe_uint64() //uint64(rand.Uint32()) << 32 | uint64(rand.Uint32())
s[ind] = RINGELT(single_sample(rnd))
if s[ind] > 0 {
if (r & 1) == 1 {
//fmt.Printf("%d : %d %d \n",ind,s[ind], RINGELT(q) - s[ind])
s[ind] = RINGELT(q) - s[ind]
}
}
r >>= 1
ind++
}
//#if !MISPOWEROFTWO
// s[m-1] = 0;
//#endif
}
/* Round and cross-round */
func round_and_cross_round(modular_rnd *[muwords]uint64, cross_rnd *[muwords]uint64, v []RINGELT) {
//RANDOM_VARS;
i := RINGELT(0)
r := Random_Safe_uint64()
var word, pos, rbit, val RINGELT = 0, 0, 0, 0
//memset((void *) modular_rnd, 0, muwords*sizeof(uint64_t));
//memset((void *) cross_rnd, 0, muwords*sizeof(uint64_t));
for i = 0; i < m; i++ {
val = v[i]
/*Randomize rounding procedure - probabilistic nudge*/
if qmod4 == 1 {
if val == 0 {
if (r & 1) == 1 {
val = (q - 1)
}
rbit++
if rbit >= 64 {
r = Random_Safe_uint64()
rbit = 0
} else {
r = (r >> 1)
}
} else if val == q_1_4-1 {
if (r & 1) == 1 {
val = q_1_4
}
rbit++
if rbit >= 64 {
r = Random_Safe_uint64()
rbit = 0
} else {
r = (r >> 1)
}
}
} else {
if val == 0 {
if (r & 1) == 1 {
val = (q - 1)
}
rbit++
if rbit >= 64 {
r = Random_Safe_uint64()
rbit = 0
} else {
r = (r >> 1)
}
} else if val == q_3_4-1 {
if (r & 1) == 1 {
val = q_3_4
}
rbit++
if rbit >= 64 {
r = Random_Safe_uint64()
rbit = 0
} else {
r = (r >> 1)
}
}
}
/*Modular rounding process*/
if val > q_1_4 && val < q_3_4 {
modular_rnd[word] |= (uint64(1) << pos)
}
/*Cross Rounding process*/
if (val > q_1_4 && val <= q_2_4) || val >= q_3_4 {
cross_rnd[word] |= (uint64(1) << pos)
}
pos++
if pos == 64 {
word++
pos = 0
}
}
}
/* Reconcile */
func rec(r *[muwords]uint64, w []RINGELT, b [muwords]uint64) {
i := RINGELT(0)
word := RINGELT(0)
pos := RINGELT(0)
//memset((void *) r, 0, muwords*sizeof(uint64_t));
for i = 0; i < m; i++ {
if ((b[word] >> pos) & 1) == 1 {
if w[i] > r1_l && w[i] < r1_u {
r[word] |= (uint64(1) << pos)
}
} else {
if w[i] > r0_l && w[i] < r0_u {
r[word] |= (uint64(1) << pos)
}
}
pos++
if pos == 64 {
word++
pos = 0
}
}
}
/* Construct Alice's private / public key pair. Return all elements in the Fourier Domain
* input: none
* output: private key s_1=s[n]...s[2*n-1] in Fourier Domain
* noise term s_0=s[0]...s[n-1] in Fourier Domain, not needed again
* public key b in Fourier Domain
*/
func KEM1_Generate(s *[2 * m]RINGELT, b *[m]RINGELT) {
// these arrays just refer to underlying slices
noise := s[:1024]
private := s[1024:]
public := b[:1024]
sample_secret(noise)
sample_secret(private)
FFT_Forward(noise)
FFT_Forward(private)
// generate public key in public
POINTWISE_MUL_ADD(noise, private, public)
}
/* Encapsulation routine. Returns an element in R_q x R_2
* input: Alice's public key b in Fourier Domain
* output: Bob's public key u in Fourier Domain
* reconciliation data cr_v
* shared secret mu
*/
func KEM1_Encapsulate(u *[m]RINGELT, cr_v *[muwords]uint64, mu *[muwords]uint64, b []RINGELT) {
// create bob's noise, private key, public key
var noise = make([]RINGELT, 1024, 1024)
var private = make([]RINGELT, 1024, 1024)
//var public = make([]RINGELT,1024,1024);
public := u[:]
var v = make([]RINGELT, 1024, 1024)
var e2 = make([]RINGELT, 1024, 1024)
sample_secret(noise)
sample_secret(private)
FFT_Forward(noise)
FFT_Forward(private)
sample_secret(e2)
// generate public key in public
// remember bob's public key is differently generated
// alice's public key is generated by POINTWISE_MUL_ADD(noise,private,public)
// however bob's public is generated using POINTWISE_MUL_ADD(private,noise,public)
// note that private and noise are interchanged
// verify the crypo more throughly as there might be inherent weakness
// however, this might be the basis of the strength also
POINTWISE_MUL_ADD(private, noise, public)
/* for i:=1000 ; i < 1024;i++{
fmt.Printf("bob %4d: %8d %8d %d \n",i,noise[i],private[i], public[i])
}
*/
//copy(u, public[:] )
/*for i:=0 ; i < 1024;i++{
u[i]= public[i]
}*/
POINTWISE_MUL(v, b, noise)
FFT_Backward(v)
//FFT_twisted_backward_1024_40961(v)
//MAPTOCYCLOTOMIC(v); since we are already power of 2, it's not required and is thus a NIL operation
POINTWISE_ADD(v, v, e2)
round_and_cross_round(mu, cr_v, v)
/*
for i:=0 ; i < 16;i++{
fmt.Printf("%4d: %d %d %d\n",i,private[i], mu[i],cr_v[i])
}
{
total := uint64(0)
for i:=0 ; i < 1024;i++{
total = total + uint64(v[i])
}
fmt.Printf("Total %d\n",total)
}
*/
}
/* Decapsulation routine.
* input: Bob's public key u in Fourier Domain
* Alice's private key s_1 in Fourier Domain
* reconciliation data cr_v
* output: shared secret mu
void KEM1_Decapsulate(uint64_t mu[muwords], RINGELT u[m], RINGELT s_1[m], uint64_t cr_v[muwords]) {
RINGELT w[m];
POINTWISE_MUL(w, s_1, u); //Create w = s1*u
FFT_backward(w); //Undo the Fourier Transform
MAPTOCYCLOTOMIC(w);
rec(mu, w, cr_v);
}
*/
func KEM1_Decapsulate(mu *[muwords]uint64, u []RINGELT, s_1 []RINGELT, cr_v [muwords]uint64) {
w := make([]RINGELT, m, m)
POINTWISE_MUL(w, s_1, u)
FFT_Backward(w)
rec(mu, w, cr_v)
/* {
total := uint64(0)
for i:=0 ; i < 1024;i++{
total = total + uint64(w[i])
}
fmt.Printf("Total w %d\n",total)
}*/
}
func pld_main() {
fmt.Printf("Init RWLE\n")
/*Exclusively For Alice*/
var s_alice [2 * m]RINGELT /* Alice's Private Key */
var mu_alice [muwords]uint64 /* Alice's recovered mu */
/*Exclusively For Bob*/
var mu_bob [muwords]uint64 /* Bob's version of mu */
/*Information that gets shared by Alice and Bob*/
var b_alice [m]RINGELT /* Alice's Public Key */
var u [m]RINGELT /* Bob's Ring Element from Encapsulation */
var cr_v [muwords]uint64 /* Cross Rounding of v */
/*for i:=0 ; i < 100;i++{
fmt.Printf("%4d: %d\n",i,RANDOM8())
}*/
KEM1_Generate(&s_alice, &b_alice)
// KEM1_Generate(s_alice,b_alice)
for i := 1000; i < 1024; i++ {
fmt.Printf("%4d: %8d %8d %d %d\n", i, s_alice[i], s_alice[i+1024], b_alice[i], len(s_alice))
}
fmt.Printf("Keys initialised\n")
public_alice := b_alice[:1024]
KEM1_Encapsulate(&u, &cr_v, &mu_bob, public_alice)
/* for i:=0 ; i < 16;i++{
fmt.Printf("%4d: %d %d %dx\n",i,u[i],cr_v[i],mu_bob[i])
}
*/
private_alice := s_alice[1024:]
u_copy := u[:]
KEM1_Decapsulate(&mu_alice, u_copy, private_alice, cr_v)
for i := 0; i < 16; i++ {
fmt.Printf("%4d: %d %d \n", i, mu_bob[i], mu_alice[i])
}
}