-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcount-vg-hap-cov.cpp
350 lines (313 loc) · 14.6 KB
/
count-vg-hap-cov.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Count the number of bases that aren't in a given reference sample.
// Print the table of results stratisfied by number of covering samples
// Assume's current cactus convertion of Sample.Haplotype.Contig
//#define debug
#include <cstdlib>
#include <iostream>
#include <cassert>
#include <fstream>
#include <deque>
#include <unordered_map>
#include <unistd.h>
#include <getopt.h>
#include <omp.h>
#include "bdsg/packed_graph.hpp"
#include "bdsg/hash_graph.hpp"
using namespace std;
using namespace handlegraph;
using namespace bdsg;
static unique_ptr<PathHandleGraph> load_graph(istream& graph_stream) {
char magic_bytes[4];
graph_stream.read(magic_bytes, 4);
uint32_t magic_number = ntohl(*((uint32_t*) magic_bytes));
graph_stream.clear();
graph_stream.seekg(0, ios::beg);
PathHandleGraph* graph;
if (magic_number == PackedGraph().get_magic_number()) {
graph = new PackedGraph();
} else if (magic_number == HashGraph().get_magic_number()) {
graph = new HashGraph();
} else {
cerr << "Unable to parse input graph with magic number " << magic_number << endl;
exit(1);
}
dynamic_cast<SerializableHandleGraph*>(graph)->deserialize(graph_stream);
return unique_ptr<PathHandleGraph>(graph);
}
void help(char** argv) {
cerr << "usage: " << argv[0] << " [options] <graph> [graph] [graph] [...]" << endl
<< "Count nodes and bp in graph covered by different sample counts\n"
<< "Assumes SAMPLE.HAPLOTYPE.CONTIG path name format" << endl
<< endl
<< "options: " << endl
<< " -r, --reference Include counts of nodes that are not present in the given reference sample prefix" << endl
<< " -i, --ignore Completely ignore all paths with given prefix [default: _MINIGRAPH_]" << endl
<< " -t, --threads Number of threads [default: all]" << endl
<< " -s, --separator Use this separator for tokenizing path name. Haplotype key will be first 2 tokens (or all tokens if fewer than 2) [default=.]" << endl
<< " -p, --progress Print progress" << endl
<< endl;
}
// returns SAMPLE.HAPLOTYPE
// todo: vg/bdsg in progress of adpoting conventions / api
// to manage stuff like this -- should switch to using that
const string& get_sample_name(const PathHandleGraph* graph, path_handle_t path_handle,
unordered_map<path_handle_t, string>& name_map,
char separator) {
if (!name_map.count(path_handle)) {
string path_name = graph->get_path_name(path_handle);
string sample;
int dots = 0;
for (int64_t i = 0; i < path_name.length(); ++i) {
if (path_name[i] == separator) {
++dots;
}
if (dots == 2) {
break;
}
sample.push_back(path_name[i]);
}
name_map[path_handle] = sample;
}
return name_map.at(path_handle);
}
int main(int argc, char** argv) {
string ref_sample;
string ignore_sample = "_MINIGRAPH_";
char separator = '.';
bool progress = false;
int c;
optind = 1;
while (true) {
static const struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"ref-sample", required_argument, 0, 'r'},
{"ignore", required_argument, 0, 'i'},
{"separator", required_argument, 0, 's'},
{"threads", required_argument, 0, 't'},
{"progress", no_argument, 0, 'p'},
{0, 0, 0, 0}
};
int option_index = 0;
c = getopt_long (argc, argv, "hr:s:i:t:p",
long_options, &option_index);
// Detect the end of the options.
if (c == -1)
break;
switch (c)
{
case 'r':
ref_sample = optarg;
break;
case 'i':
ignore_sample = optarg;
break;
case 's':
assert(strlen(optarg) == 1);
separator = optarg[0];
break;
case 't':
{
int num_threads = stoi(optarg);
if (num_threads <= 0) {
cerr << "error:[count-vg-hap-depth] Thread count (-t) set to " << num_threads << ", must set to a positive integer." << endl;
exit(1);
}
omp_set_num_threads(num_threads);
break;
}
case 'p':
progress = true;
break;
case 'h':
case '?':
/* getopt_long already printed an error message. */
help(argv);
exit(1);
break;
default:
abort ();
}
}
if (argc <= 1) {
help(argv);
return 1;
}
// Parse the positional argument
if (optind >= argc) {
cerr << "[count-vg-hap-depth] error: too few arguments" << endl;
help(argv);
return 1;
}
// depth stats (one per thread)
vector<vector<int64_t>> depth_base_counts(get_thread_count());
vector<vector<int64_t>> depth_nfree_base_counts(get_thread_count());
vector<vector<int64_t>> depth_node_counts(get_thread_count());
vector<vector<int64_t>> depth_base_counts_nonref(get_thread_count());
vector<vector<int64_t>> depth_nfree_base_counts_nonref(get_thread_count());
vector<vector<int64_t>> depth_node_counts_nonref(get_thread_count());
// do counts for each graph arg
while(optind < argc) {
string graph_path = argv[optind++];
ifstream graph_stream(graph_path);
if (!graph_stream) {
cerr << "[count-vg-hap-depth] error: Unable to open input graph " << graph_path << endl;
return 1;
}
unique_ptr<PathHandleGraph> graph = load_graph(graph_stream);
graph_stream.close();
if (progress) {
cerr << "[count-vg-hap-depth]: Loaded graph" << endl;
}
// path handle to sample key (one per thread)
vector<unordered_map<path_handle_t, string>> name_maps(get_thread_count());
if (progress) {
cerr << "[count-vg-hap-depth]: Calculating coverage with " << depth_base_counts.size() << " threads" << endl;
}
graph->for_each_handle([&](handle_t handle) {
int64_t t = omp_get_thread_num();
// collect all the samples that step on the node
set<string> sample_set;
bool ref = false;
graph->for_each_step_on_handle(handle, [&](step_handle_t step_handle) {
const string& sample_name = get_sample_name(graph.get(), graph->get_path_handle_of_step(step_handle), name_maps[t], separator);
if (ignore_sample.empty() || sample_name.compare(0, ignore_sample.length(), ignore_sample) != 0) {
if (!ref && sample_name.compare(0, ref_sample.length(), ref_sample) == 0) {
ref = true;
}
sample_set.insert(sample_name);
}
});
// update the total coverage
int64_t coverage = sample_set.size();
if (depth_base_counts[t].size() <= coverage) {
depth_base_counts[t].resize(coverage + 1, 0);
depth_node_counts[t].resize(coverage + 1, 0);
depth_nfree_base_counts[t].resize(coverage + 1, 0);
}
int64_t node_len = graph->get_length(handle);
int64_t num_ns = 0;
string node_seq = graph->get_sequence(handle);
for (auto c : node_seq) {
if (c == 'N' || c == 'n') {
++num_ns;
}
}
depth_base_counts[t][coverage] += node_len;
depth_nfree_base_counts[t][coverage] += node_len - num_ns;
depth_node_counts[t][coverage] += 1;
if (!ref && !ref_sample.empty()) {
// update the nonref coverage
int64_t coverage = sample_set.size();
if (depth_base_counts_nonref[t].size() <= coverage) {
depth_base_counts_nonref[t].resize(coverage + 1, 0);
depth_node_counts_nonref[t].resize(coverage + 1, 0);
depth_nfree_base_counts_nonref[t].resize(coverage + 1, 0);
}
depth_base_counts_nonref[t][coverage] += node_len;
depth_nfree_base_counts_nonref[t][coverage] += node_len - num_ns;
depth_node_counts_nonref[t][coverage] += 1;
}
},
true);
}
// make sure all tables have same size
size_t max_size = 0;
for (int64_t t = 0; t < get_thread_count(); ++t) {
max_size = std::max(max_size, depth_base_counts[t].size());
max_size = std::max(max_size, depth_base_counts_nonref[t].size());
}
for (int64_t t = 0; t < get_thread_count(); ++t) {
if (depth_base_counts[t].size() < max_size) {
depth_base_counts[t].resize(max_size, 0);
depth_nfree_base_counts[t].resize(max_size, 0);
depth_node_counts[t].resize(max_size, 0);
}
if (depth_base_counts_nonref[t].size() < max_size) {
depth_base_counts_nonref[t].resize(max_size, 0);
depth_nfree_base_counts_nonref[t].resize(max_size, 0);
depth_node_counts_nonref[t].resize(max_size, 0);
}
assert(depth_base_counts[t].size() == max_size);
assert(depth_nfree_base_counts[t].size() == max_size);
assert(depth_node_counts[t].size() == max_size);
assert(depth_base_counts_nonref[t].size() == max_size);
assert(depth_nfree_base_counts_nonref[t].size() == max_size);
assert(depth_node_counts_nonref[t].size() == max_size);
}
if (progress) {
cerr << "[count-vg-hap-depth]: Merging data from different threads" << endl;
}
// merge up the threads
for (int64_t t = 1; t < get_thread_count(); ++t) {
for (int64_t coverage = 0; coverage < depth_base_counts[t].size(); ++coverage) {
assert(depth_base_counts[0].size() > coverage);
depth_base_counts[0][coverage] += depth_base_counts[t][coverage];
depth_nfree_base_counts[0][coverage] += depth_nfree_base_counts[t][coverage];
depth_node_counts[0][coverage] += depth_node_counts[t][coverage];
if (!ref_sample.empty()) {
assert(depth_base_counts_nonref[0].size() > coverage);
depth_base_counts_nonref[0][coverage] += depth_base_counts_nonref[t][coverage];
depth_nfree_base_counts_nonref[0][coverage] += depth_nfree_base_counts_nonref[t][coverage];
depth_node_counts_nonref[0][coverage] += depth_node_counts_nonref[t][coverage];
}
}
}
// there's almost certainly an stl one-line for this.. oh well
function<vector<int64_t>(const vector<int64_t>&)> get_cumul = [](const vector<int64_t>& v) {
int64_t tot = 0;
vector<int64_t> cumul(v.size(), 0);
for (int64_t i = 0; i < v.size(); ++i) {
tot += v[i];
cumul[i] = tot;
}
return cumul;
};
function<vector<int64_t>(const vector<int64_t>&)> get_lumuc = [](const vector<int64_t>& v) {
int64_t tot = 0;
vector<int64_t> cumul(v.size(), 0);
for (int64_t i = v.size() - 1; i >= 0; --i) {
tot += v[i];
cumul[i] = tot;
}
return cumul;
};
// keep cumulative counts while we're at it
// cumulate from 0
vector<int64_t> node_counts_cumul = get_cumul(depth_node_counts[0]);
vector<int64_t> base_counts_cumul = get_cumul(depth_base_counts[0]);
vector<int64_t> nfree_base_counts_cumul = get_cumul(depth_nfree_base_counts[0]);
vector<int64_t> node_counts_nonref_cumul = get_cumul(depth_node_counts_nonref[0]);
vector<int64_t> base_counts_nonref_cumul = get_cumul(depth_base_counts_nonref[0]);
vector<int64_t> nfree_base_counts_nonref_cumul = get_cumul(depth_nfree_base_counts_nonref[0]);
//cumulate from end
vector<int64_t> node_counts_lumuc = get_lumuc(depth_node_counts[0]);
vector<int64_t> base_counts_lumuc = get_lumuc(depth_base_counts[0]);
vector<int64_t> nfree_base_counts_lumuc = get_lumuc(depth_nfree_base_counts[0]);
vector<int64_t> node_counts_nonref_lumuc = get_lumuc(depth_node_counts_nonref[0]);
vector<int64_t> base_counts_nonref_lumuc = get_lumuc(depth_base_counts_nonref[0]);
vector<int64_t> nfree_base_counts_nonref_lumuc = get_lumuc(depth_nfree_base_counts_nonref[0]);
// print the results
cout << "hap-depth"
<< "\t" << "nodes" << "\t" << "bases" << "\t" << "non-n-bases"
<< "\t" << "nodes-cumul" << "\t" <<"bases-cumul" << "\t" << "non-n-bases-cumul"
<< "\t" << "nodes-cumul-rev" << "\t" << "bases-cumul-rev" << "\t" << "non-n-bases-cumul-rev";
if (!ref_sample.empty()) {
cout << "\t" << "nodes-nonref" << "\t" << "bases-nonref" << "\t" << "non-n-bases-nonref"
<< "\t" << "nodes-cumul-nonref" << "\t" << "bases-cumul-nonref" << "\t" << "non-n-bases-cumul-nonref"
<< "\t" << "nodes-cumul-rev-nonref" << "\t" << "bases-cumul-rev-nonref" << "\t" << "non-n-bases-cumul-rev-nonref";
}
cout << endl;
for (int64_t coverage = 0; coverage < depth_base_counts[0].size(); ++coverage) {
cout << coverage
<< "\t" << depth_node_counts[0][coverage] << "\t" << depth_base_counts[0][coverage] << "\t" << depth_nfree_base_counts[0][coverage]
<< "\t" << node_counts_cumul[coverage] << "\t" << base_counts_cumul[coverage] << "\t" << nfree_base_counts_cumul[coverage]
<< "\t" << node_counts_lumuc[coverage] << "\t" << base_counts_lumuc[coverage] << "\t" << nfree_base_counts_lumuc[coverage];
if (!ref_sample.empty()) {
cout << "\t" << depth_node_counts_nonref[0][coverage] << "\t" << depth_base_counts_nonref[0][coverage] << "\t" << depth_nfree_base_counts_nonref[0][coverage]
<< "\t" << node_counts_nonref_cumul[coverage] << "\t" << base_counts_nonref_cumul[coverage] << "\t" << nfree_base_counts_nonref_cumul[coverage]
<< "\t" << node_counts_nonref_lumuc[coverage] << "\t" << base_counts_nonref_lumuc[coverage] << "\t" << nfree_base_counts_nonref_lumuc[coverage];
}
cout << "\n";
}
return 0;
}