-
Notifications
You must be signed in to change notification settings - Fork 652
/
Copy pathpr_code_suggestions.py
781 lines (682 loc) · 43.6 KB
/
pr_code_suggestions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
import asyncio
import copy
import textwrap
from functools import partial
from typing import Dict, List
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler
from pr_agent.algo.pr_processing import get_pr_diff, get_pr_multi_diffs, retry_with_fallback_models, \
add_ai_metadata_to_diff_files
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import load_yaml, replace_code_tags, ModelType, show_relevant_configurations
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider, get_git_provider_with_context, GithubProvider, GitLabProvider, \
AzureDevopsProvider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
from pr_agent.servers.help import HelpMessage
from pr_agent.tools.pr_description import insert_br_after_x_chars
import difflib
import re
class PRCodeSuggestions:
def __init__(self, pr_url: str, cli_mode=False, args: list = None,
ai_handler: partial[BaseAiHandler,] = LiteLLMAIHandler):
self.git_provider = get_git_provider_with_context(pr_url)
self.main_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
# limit context specifically for the improve command, which has hard input to parse:
if get_settings().pr_code_suggestions.max_context_tokens:
MAX_CONTEXT_TOKENS_IMPROVE = get_settings().pr_code_suggestions.max_context_tokens
if get_settings().config.max_model_tokens > MAX_CONTEXT_TOKENS_IMPROVE:
get_logger().info(f"Setting max_model_tokens to {MAX_CONTEXT_TOKENS_IMPROVE} for PR improve")
get_settings().config.max_model_tokens_original = get_settings().config.max_model_tokens
get_settings().config.max_model_tokens = MAX_CONTEXT_TOKENS_IMPROVE
# extended mode
try:
self.is_extended = self._get_is_extended(args or [])
except:
self.is_extended = False
num_code_suggestions = get_settings().pr_code_suggestions.num_code_suggestions_per_chunk
self.ai_handler = ai_handler()
self.ai_handler.main_pr_language = self.main_language
self.patches_diff = None
self.prediction = None
self.pr_url = pr_url
self.cli_mode = cli_mode
self.pr_description, self.pr_description_files = (
self.git_provider.get_pr_description(split_changes_walkthrough=True))
if (self.pr_description_files and get_settings().get("config.is_auto_command", False) and
get_settings().get("config.enable_ai_metadata", False)):
add_ai_metadata_to_diff_files(self.git_provider, self.pr_description_files)
get_logger().debug(f"AI metadata added to the this command")
else:
get_settings().set("config.enable_ai_metadata", False)
get_logger().debug(f"AI metadata is disabled for this command")
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.pr_description,
"language": self.main_language,
"diff": "", # empty diff for initial calculation
"num_code_suggestions": num_code_suggestions,
"extra_instructions": get_settings().pr_code_suggestions.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
"relevant_best_practices": "",
"is_ai_metadata": get_settings().get("config.enable_ai_metadata", False),
}
self.pr_code_suggestions_prompt_system = get_settings().pr_code_suggestions_prompt.system
self.token_handler = TokenHandler(self.git_provider.pr,
self.vars,
self.pr_code_suggestions_prompt_system,
get_settings().pr_code_suggestions_prompt.user)
self.progress = f"## Generating PR code suggestions\n\n"
self.progress += f"""\nWork in progress ...<br>\n<img src="https://codium.ai/images/pr_agent/dual_ball_loading-crop.gif" width=48>"""
self.progress_response = None
async def run(self):
try:
if not self.git_provider.get_files():
get_logger().info(f"PR has no files: {self.pr_url}, skipping code suggestions")
return None
get_logger().info('Generating code suggestions for PR...')
relevant_configs = {'pr_code_suggestions': dict(get_settings().pr_code_suggestions),
'config': dict(get_settings().config)}
get_logger().debug("Relevant configs", artifacts=relevant_configs)
if (get_settings().config.publish_output and get_settings().config.publish_output_progress and
not get_settings().config.get('is_auto_command', False)):
if self.git_provider.is_supported("gfm_markdown"):
self.progress_response = self.git_provider.publish_comment(self.progress)
else:
self.git_provider.publish_comment("Preparing suggestions...", is_temporary=True)
if not self.is_extended:
data = await retry_with_fallback_models(self._prepare_prediction)
else:
data = await retry_with_fallback_models(self._prepare_prediction_extended)
if not data:
data = {"code_suggestions": []}
if (data is None or 'code_suggestions' not in data or not data['code_suggestions']
and get_settings().config.publish_output):
get_logger().warning('No code suggestions found for the PR.')
pr_body = "## PR Code Suggestions ✨\n\nNo code suggestions found for the PR."
get_logger().debug(f"PR output", artifact=pr_body)
if self.progress_response:
self.git_provider.edit_comment(self.progress_response, body=pr_body)
else:
self.git_provider.publish_comment(pr_body)
return
if (not self.is_extended and get_settings().pr_code_suggestions.rank_suggestions) or \
(self.is_extended and get_settings().pr_code_suggestions.rank_extended_suggestions):
get_logger().info('Ranking Suggestions...')
data['code_suggestions'] = await self.rank_suggestions(data['code_suggestions'])
if get_settings().config.publish_output:
self.git_provider.remove_initial_comment()
if ((not get_settings().pr_code_suggestions.commitable_code_suggestions) and
self.git_provider.is_supported("gfm_markdown")):
# generate summarized suggestions
pr_body = self.generate_summarized_suggestions(data)
get_logger().debug(f"PR output", artifact=pr_body)
# require self-review
if get_settings().pr_code_suggestions.demand_code_suggestions_self_review:
text = get_settings().pr_code_suggestions.code_suggestions_self_review_text
pr_body += f"\n\n- [ ] {text}"
if get_settings().pr_code_suggestions.approve_pr_on_self_review:
pr_body += ' <!-- approve pr self-review -->'
# add usage guide
if (get_settings().pr_code_suggestions.enable_chat_text and get_settings().config.is_auto_command
and isinstance(self.git_provider, GithubProvider)):
pr_body += "\n\n>💡 Need additional feedback ? start a [PR chat](https://chromewebstore.google.com/detail/ephlnjeghhogofkifjloamocljapahnl) \n\n"
if get_settings().pr_code_suggestions.enable_help_text:
pr_body += "<hr>\n\n<details> <summary><strong>💡 Tool usage guide:</strong></summary><hr> \n\n"
pr_body += HelpMessage.get_improve_usage_guide()
pr_body += "\n</details>\n"
# Output the relevant configurations if enabled
if get_settings().get('config', {}).get('output_relevant_configurations', False):
pr_body += show_relevant_configurations(relevant_section='pr_code_suggestions')
# publish the PR comment
if get_settings().pr_code_suggestions.persistent_comment:
final_update_message = False
self.publish_persistent_comment_with_history(pr_body,
initial_header="## PR Code Suggestions ✨",
update_header=True,
name="suggestions",
final_update_message=final_update_message,
max_previous_comments=get_settings().pr_code_suggestions.max_history_len,
progress_response=self.progress_response)
else:
if self.progress_response:
self.git_provider.edit_comment(self.progress_response, body=pr_body)
else:
self.git_provider.publish_comment(pr_body)
# dual publishing mode
if int(get_settings().pr_code_suggestions.dual_publishing_score_threshold) > 0:
data_above_threshold = {'code_suggestions': []}
try:
for suggestion in data['code_suggestions']:
if int(suggestion.get('score', 0)) >= int(get_settings().pr_code_suggestions.dual_publishing_score_threshold) \
and suggestion.get('improved_code'):
data_above_threshold['code_suggestions'].append(suggestion)
if not data_above_threshold['code_suggestions'][-1]['existing_code']:
get_logger().info(f'Identical existing and improved code for dual publishing found')
data_above_threshold['code_suggestions'][-1]['existing_code'] = suggestion[
'improved_code']
if data_above_threshold['code_suggestions']:
get_logger().info(
f"Publishing {len(data_above_threshold['code_suggestions'])} suggestions in dual publishing mode")
self.push_inline_code_suggestions(data_above_threshold)
except Exception as e:
get_logger().error(f"Failed to publish dual publishing suggestions, error: {e}")
else:
self.push_inline_code_suggestions(data)
if self.progress_response:
self.git_provider.remove_comment(self.progress_response)
else:
get_logger().info('Code suggestions generated for PR, but not published since publish_output is False.')
except Exception as e:
get_logger().error(f"Failed to generate code suggestions for PR, error: {e}")
if get_settings().config.publish_output:
if self.progress_response:
self.progress_response.delete()
else:
try:
self.git_provider.remove_initial_comment()
self.git_provider.publish_comment(f"Failed to generate code suggestions for PR")
except Exception as e:
pass
def publish_persistent_comment_with_history(self, pr_comment: str,
initial_header: str,
update_header: bool = True,
name='review',
final_update_message=True,
max_previous_comments=4,
progress_response=None):
if isinstance(self.git_provider, AzureDevopsProvider): # get_latest_commit_url is not supported yet
if progress_response:
self.git_provider.edit_comment(progress_response, pr_comment)
else:
self.git_provider.publish_comment(pr_comment)
return
history_header = f"#### Previous suggestions\n"
last_commit_num = self.git_provider.get_latest_commit_url().split('/')[-1][:7]
latest_suggestion_header = f"Latest suggestions up to {last_commit_num}"
latest_commit_html_comment = f"<!-- {last_commit_num} -->"
found_comment = None
if max_previous_comments > 0:
try:
prev_comments = list(self.git_provider.get_issue_comments())
for comment in prev_comments:
if comment.body.startswith(initial_header):
prev_suggestions = comment.body
found_comment = comment
comment_url = self.git_provider.get_comment_url(comment)
if history_header.strip() not in comment.body:
# no history section
# extract everything between <table> and </table> in comment.body including <table> and </table>
table_index = comment.body.find("<table>")
if table_index == -1:
self.git_provider.edit_comment(comment, pr_comment)
continue
# find http link from comment.body[:table_index]
up_to_commit_txt = self.extract_link(comment.body[:table_index])
prev_suggestion_table = comment.body[
table_index:comment.body.rfind("</table>") + len("</table>")]
tick = "✅ " if "✅" in prev_suggestion_table else ""
# surround with details tag
prev_suggestion_table = f"<details><summary>{tick}{name.capitalize()}{up_to_commit_txt}</summary>\n<br>{prev_suggestion_table}\n\n</details>"
new_suggestion_table = pr_comment.replace(initial_header, "").strip()
pr_comment_updated = f"{initial_header}\n{latest_commit_html_comment}\n\n"
pr_comment_updated += f"{latest_suggestion_header}\n{new_suggestion_table}\n\n___\n\n"
pr_comment_updated += f"{history_header}{prev_suggestion_table}\n"
else:
# get the text of the previous suggestions until the latest commit
sections = prev_suggestions.split(history_header.strip())
latest_table = sections[0].strip()
prev_suggestion_table = sections[1].replace(history_header, "").strip()
# get text after the latest_suggestion_header in comment.body
table_ind = latest_table.find("<table>")
up_to_commit_txt = self.extract_link(latest_table[:table_ind])
latest_table = latest_table[table_ind:latest_table.rfind("</table>") + len("</table>")]
# enforce max_previous_comments
count = prev_suggestions.count(f"\n<details><summary>{name.capitalize()}")
count += prev_suggestions.count(f"\n<details><summary>✅ {name.capitalize()}")
if count >= max_previous_comments:
# remove the oldest suggestion
prev_suggestion_table = prev_suggestion_table[:prev_suggestion_table.rfind(
f"<details><summary>{name.capitalize()} up to commit")]
tick = "✅ " if "✅" in latest_table else ""
# Add to the prev_suggestions section
last_prev_table = f"\n<details><summary>{tick}{name.capitalize()}{up_to_commit_txt}</summary>\n<br>{latest_table}\n\n</details>"
prev_suggestion_table = last_prev_table + "\n" + prev_suggestion_table
new_suggestion_table = pr_comment.replace(initial_header, "").strip()
pr_comment_updated = f"{initial_header}\n"
pr_comment_updated += f"{latest_commit_html_comment}\n\n"
pr_comment_updated += f"{latest_suggestion_header}\n\n{new_suggestion_table}\n\n"
pr_comment_updated += "___\n\n"
pr_comment_updated += f"{history_header}\n"
pr_comment_updated += f"{prev_suggestion_table}\n"
get_logger().info(f"Persistent mode - updating comment {comment_url} to latest {name} message")
if progress_response: # publish to 'progress_response' comment, because it refreshes immediately
self.git_provider.edit_comment(progress_response, pr_comment_updated)
self.git_provider.remove_comment(comment)
else:
self.git_provider.edit_comment(comment, pr_comment_updated)
return
except Exception as e:
get_logger().exception(f"Failed to update persistent review, error: {e}")
pass
# if we are here, we did not find a previous comment to update
body = pr_comment.replace(initial_header, "").strip()
pr_comment = f"{initial_header}\n\n{latest_commit_html_comment}\n\n{body}\n\n"
if progress_response:
self.git_provider.edit_comment(progress_response, pr_comment)
else:
self.git_provider.publish_comment(pr_comment)
def extract_link(self, s):
r = re.compile(r"<!--.*?-->")
match = r.search(s)
up_to_commit_txt = ""
if match:
up_to_commit_txt = f" up to commit {match.group(0)[4:-3].strip()}"
return up_to_commit_txt
async def _prepare_prediction(self, model: str) -> dict:
self.patches_diff = get_pr_diff(self.git_provider,
self.token_handler,
model,
add_line_numbers_to_hunks=True,
disable_extra_lines=False)
if self.patches_diff:
get_logger().debug(f"PR diff", artifact=self.patches_diff)
self.prediction = await self._get_prediction(model, self.patches_diff)
else:
get_logger().warning(f"Empty PR diff")
self.prediction = None
data = self.prediction
return data
async def _get_prediction(self, model: str, patches_diff: str) -> dict:
variables = copy.deepcopy(self.vars)
variables["diff"] = patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(self.pr_code_suggestions_prompt_system).render(variables)
user_prompt = environment.from_string(get_settings().pr_code_suggestions_prompt.user).render(variables)
response, finish_reason = await self.ai_handler.chat_completion(
model=model, temperature=get_settings().config.temperature, system=system_prompt, user=user_prompt)
# load suggestions from the AI response
data = self._prepare_pr_code_suggestions(response)
# self-reflect on suggestions
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
model_turbo = get_settings().config.model_turbo # use turbo model for self-reflection, since it is an easier task
response_reflect = await self.self_reflect_on_suggestions(data["code_suggestions"],
patches_diff, model=model_turbo)
if response_reflect:
response_reflect_yaml = load_yaml(response_reflect)
code_suggestions_feedback = response_reflect_yaml["code_suggestions"]
if len(code_suggestions_feedback) == len(data["code_suggestions"]):
for i, suggestion in enumerate(data["code_suggestions"]):
try:
suggestion["score"] = code_suggestions_feedback[i]["suggestion_score"]
suggestion["score_why"] = code_suggestions_feedback[i]["why"]
except Exception as e: #
get_logger().error(f"Error processing suggestion score {i}",
artifact={"suggestion": suggestion,
"code_suggestions_feedback": code_suggestions_feedback[i]})
suggestion["score"] = 7
suggestion["score_why"] = ""
else:
# get_logger().error(f"Could not self-reflect on suggestions. using default score 7")
for i, suggestion in enumerate(data["code_suggestions"]):
suggestion["score"] = 7
suggestion["score_why"] = ""
return data
@staticmethod
def _truncate_if_needed(suggestion):
max_code_suggestion_length = get_settings().get("PR_CODE_SUGGESTIONS.MAX_CODE_SUGGESTION_LENGTH", 0)
suggestion_truncation_message = get_settings().get("PR_CODE_SUGGESTIONS.SUGGESTION_TRUNCATION_MESSAGE", "")
if max_code_suggestion_length > 0:
if len(suggestion['improved_code']) > max_code_suggestion_length:
suggestion['improved_code'] = suggestion['improved_code'][:max_code_suggestion_length]
suggestion['improved_code'] += f"\n{suggestion_truncation_message}"
get_logger().info(f"Truncated suggestion from {len(suggestion['improved_code'])} "
f"characters to {max_code_suggestion_length} characters")
return suggestion
def _prepare_pr_code_suggestions(self, predictions: str) -> Dict:
data = load_yaml(predictions.strip(),
keys_fix_yaml=["relevant_file", "suggestion_content", "existing_code", "improved_code"],
first_key="code_suggestions", last_key="label")
if isinstance(data, list):
data = {'code_suggestions': data}
# remove or edit invalid suggestions
suggestion_list = []
one_sentence_summary_list = []
for i, suggestion in enumerate(data['code_suggestions']):
try:
needed_keys = ['one_sentence_summary', 'label', 'relevant_file', 'relevant_lines_start',
'relevant_lines_end']
is_valid_keys = True
for key in needed_keys:
if key not in suggestion:
is_valid_keys = False
get_logger().debug(
f"Skipping suggestion {i + 1}, because it does not contain '{key}':\n'{suggestion}")
break
if not is_valid_keys:
continue
if suggestion['one_sentence_summary'] in one_sentence_summary_list:
get_logger().debug(f"Skipping suggestion {i + 1}, because it is a duplicate: {suggestion}")
continue
if 'const' in suggestion['suggestion_content'] and 'instead' in suggestion[
'suggestion_content'] and 'let' in suggestion['suggestion_content']:
get_logger().debug(
f"Skipping suggestion {i + 1}, because it uses 'const instead let': {suggestion}")
continue
if ('existing_code' in suggestion) and ('improved_code' in suggestion):
if suggestion['existing_code'] == suggestion['improved_code']:
get_logger().debug(
f"edited improved suggestion {i + 1}, because equal to existing code: {suggestion['existing_code']}")
if get_settings().pr_code_suggestions.commitable_code_suggestions:
suggestion['improved_code'] = "" # we need 'existing_code' to locate the code in the PR
else:
suggestion['existing_code'] = ""
suggestion = self._truncate_if_needed(suggestion)
one_sentence_summary_list.append(suggestion['one_sentence_summary'])
suggestion_list.append(suggestion)
else:
get_logger().info(
f"Skipping suggestion {i + 1}, because it does not contain 'existing_code' or 'improved_code': {suggestion}")
except Exception as e:
get_logger().error(f"Error processing suggestion {i + 1}: {suggestion}, error: {e}")
data['code_suggestions'] = suggestion_list
return data
def push_inline_code_suggestions(self, data):
code_suggestions = []
if not data['code_suggestions']:
get_logger().info('No suggestions found to improve this PR.')
if self.progress_response:
return self.git_provider.edit_comment(self.progress_response,
body='No suggestions found to improve this PR.')
else:
return self.git_provider.publish_comment('No suggestions found to improve this PR.')
for d in data['code_suggestions']:
try:
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"suggestion: {d}")
relevant_file = d['relevant_file'].strip()
relevant_lines_start = int(d['relevant_lines_start']) # absolute position
relevant_lines_end = int(d['relevant_lines_end'])
content = d['suggestion_content'].rstrip()
new_code_snippet = d['improved_code'].rstrip()
label = d['label'].strip()
if new_code_snippet:
new_code_snippet = self.dedent_code(relevant_file, relevant_lines_start, new_code_snippet)
if d.get('score'):
body = f"**Suggestion:** {content} [{label}, importance: {d.get('score')}]\n```suggestion\n" + new_code_snippet + "\n```"
else:
body = f"**Suggestion:** {content} [{label}]\n```suggestion\n" + new_code_snippet + "\n```"
code_suggestions.append({'body': body, 'relevant_file': relevant_file,
'relevant_lines_start': relevant_lines_start,
'relevant_lines_end': relevant_lines_end,
'original_suggestion': d})
except Exception:
get_logger().info(f"Could not parse suggestion: {d}")
is_successful = self.git_provider.publish_code_suggestions(code_suggestions)
if not is_successful:
get_logger().info("Failed to publish code suggestions, trying to publish each suggestion separately")
for code_suggestion in code_suggestions:
self.git_provider.publish_code_suggestions([code_suggestion])
def dedent_code(self, relevant_file, relevant_lines_start, new_code_snippet):
try: # dedent code snippet
self.diff_files = self.git_provider.diff_files if self.git_provider.diff_files \
else self.git_provider.get_diff_files()
original_initial_line = None
for file in self.diff_files:
if file.filename.strip() == relevant_file:
if file.head_file:
file_lines = file.head_file.splitlines()
if relevant_lines_start > len(file_lines):
get_logger().warning(
"Could not dedent code snippet, because relevant_lines_start is out of range",
artifact={'filename': file.filename,
'file_content': file.head_file,
'relevant_lines_start': relevant_lines_start,
'new_code_snippet': new_code_snippet})
return new_code_snippet
else:
original_initial_line = file_lines[relevant_lines_start - 1]
else:
get_logger().warning("Could not dedent code snippet, because head_file is missing",
artifact={'filename': file.filename,
'relevant_lines_start': relevant_lines_start,
'new_code_snippet': new_code_snippet})
return new_code_snippet
break
if original_initial_line:
suggested_initial_line = new_code_snippet.splitlines()[0]
original_initial_spaces = len(original_initial_line) - len(original_initial_line.lstrip())
suggested_initial_spaces = len(suggested_initial_line) - len(suggested_initial_line.lstrip())
delta_spaces = original_initial_spaces - suggested_initial_spaces
if delta_spaces > 0:
new_code_snippet = textwrap.indent(new_code_snippet, delta_spaces * " ").rstrip('\n')
except Exception as e:
get_logger().error(f"Error when dedenting code snippet for file {relevant_file}, error: {e}")
return new_code_snippet
def _get_is_extended(self, args: list[str]) -> bool:
"""Check if extended mode should be enabled by the `--extended` flag or automatically according to the configuration"""
if any(["extended" in arg for arg in args]):
get_logger().info("Extended mode is enabled by the `--extended` flag")
return True
if get_settings().pr_code_suggestions.auto_extended_mode:
# get_logger().info("Extended mode is enabled automatically based on the configuration toggle")
return True
return False
async def _prepare_prediction_extended(self, model: str) -> dict:
self.patches_diff_list = get_pr_multi_diffs(self.git_provider, self.token_handler, model,
max_calls=get_settings().pr_code_suggestions.max_number_of_calls)
if self.patches_diff_list:
get_logger().info(f"Number of PR chunk calls: {len(self.patches_diff_list)}")
get_logger().debug(f"PR diff:", artifact=self.patches_diff_list)
# parallelize calls to AI:
if get_settings().pr_code_suggestions.parallel_calls:
prediction_list = await asyncio.gather(
*[self._get_prediction(model, patches_diff) for patches_diff in self.patches_diff_list])
self.prediction_list = prediction_list
else:
prediction_list = []
for i, patches_diff in enumerate(self.patches_diff_list):
prediction = await self._get_prediction(model, patches_diff)
prediction_list.append(prediction)
data = {"code_suggestions": []}
for j, predictions in enumerate(prediction_list): # each call adds an element to the list
if "code_suggestions" in predictions:
score_threshold = max(1, int(get_settings().pr_code_suggestions.suggestions_score_threshold))
for i, prediction in enumerate(predictions["code_suggestions"]):
try:
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
score = int(prediction.get("score", 1))
if score >= score_threshold:
data["code_suggestions"].append(prediction)
else:
get_logger().info(
f"Removing suggestions {i} from call {j}, because score is {score}, and score_threshold is {score_threshold}",
artifact=prediction)
else:
data["code_suggestions"].append(prediction)
except Exception as e:
get_logger().error(f"Error getting PR diff for suggestion {i} in call {j}, error: {e}")
self.data = data
else:
get_logger().warning(f"Empty PR diff list")
self.data = data = None
return data
async def rank_suggestions(self, data: List) -> List:
"""
Call a model to rank (sort) code suggestions based on their importance order.
Args:
data (List): A list of code suggestions to be ranked.
Returns:
List: The ranked list of code suggestions.
"""
suggestion_list = []
if not data:
return suggestion_list
for suggestion in data:
suggestion_list.append(suggestion)
data_sorted = [[]] * len(suggestion_list)
if len(suggestion_list) == 1:
return suggestion_list
try:
suggestion_str = ""
for i, suggestion in enumerate(suggestion_list):
suggestion_str += f"suggestion {i + 1}: " + str(suggestion) + '\n\n'
variables = {'suggestion_list': suggestion_list, 'suggestion_str': suggestion_str}
model = get_settings().config.model
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_sort_code_suggestions_prompt.system).render(
variables)
user_prompt = environment.from_string(get_settings().pr_sort_code_suggestions_prompt.user).render(variables)
response, finish_reason = await self.ai_handler.chat_completion(model=model, system=system_prompt,
user=user_prompt)
sort_order = load_yaml(response)
for s in sort_order['Sort Order']:
suggestion_number = s['suggestion number']
importance_order = s['importance order']
data_sorted[importance_order - 1] = suggestion_list[suggestion_number - 1]
if get_settings().pr_code_suggestions.final_clip_factor != 1:
max_len = max(
len(data_sorted),
get_settings().pr_code_suggestions.num_code_suggestions_per_chunk,
)
new_len = int(0.5 + max_len * get_settings().pr_code_suggestions.final_clip_factor)
if new_len < len(data_sorted):
data_sorted = data_sorted[:new_len]
except Exception as e:
if get_settings().config.verbosity_level >= 1:
get_logger().info(f"Could not sort suggestions, error: {e}")
data_sorted = suggestion_list
return data_sorted
def generate_summarized_suggestions(self, data: Dict) -> str:
try:
pr_body = "## PR Code Suggestions ✨\n\n"
if len(data.get('code_suggestions', [])) == 0:
pr_body += "No suggestions found to improve this PR."
return pr_body
if get_settings().pr_code_suggestions.enable_intro_text and get_settings().config.is_auto_command:
pr_body += "Explore these optional code suggestions:\n\n"
language_extension_map_org = get_settings().language_extension_map_org
extension_to_language = {}
for language, extensions in language_extension_map_org.items():
for ext in extensions:
extension_to_language[ext] = language
pr_body += "<table>"
header = f"Suggestion"
delta = 66
header += " " * delta
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body += f"""<thead><tr><td>Category</td><td align=left>{header}</td><td align=center>Score</td></tr>"""
else:
pr_body += f"""<thead><tr><td>Category</td><td align=left>{header}</td></tr>"""
pr_body += """<tbody>"""
suggestions_labels = dict()
# add all suggestions related to each label
for suggestion in data['code_suggestions']:
label = suggestion['label'].strip().strip("'").strip('"')
if label not in suggestions_labels:
suggestions_labels[label] = []
suggestions_labels[label].append(suggestion)
# sort suggestions_labels by the suggestion with the highest score
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
suggestions_labels = dict(
sorted(suggestions_labels.items(), key=lambda x: max([s['score'] for s in x[1]]), reverse=True))
# sort the suggestions inside each label group by score
for label, suggestions in suggestions_labels.items():
suggestions_labels[label] = sorted(suggestions, key=lambda x: x['score'], reverse=True)
counter_suggestions = 0
for label, suggestions in suggestions_labels.items():
num_suggestions = len(suggestions)
pr_body += f"""<tr><td rowspan={num_suggestions}><strong>{label.capitalize()}</strong></td>\n"""
for i, suggestion in enumerate(suggestions):
relevant_file = suggestion['relevant_file'].strip()
relevant_lines_start = int(suggestion['relevant_lines_start'])
relevant_lines_end = int(suggestion['relevant_lines_end'])
range_str = ""
if relevant_lines_start == relevant_lines_end:
range_str = f"[{relevant_lines_start}]"
else:
range_str = f"[{relevant_lines_start}-{relevant_lines_end}]"
try:
code_snippet_link = self.git_provider.get_line_link(relevant_file, relevant_lines_start,
relevant_lines_end)
except:
code_snippet_link = ""
# add html table for each suggestion
suggestion_content = suggestion['suggestion_content'].rstrip()
CHAR_LIMIT_PER_LINE = 84
suggestion_content = insert_br_after_x_chars(suggestion_content, CHAR_LIMIT_PER_LINE)
# pr_body += f"<tr><td><details><summary>{suggestion_content}</summary>"
existing_code = suggestion['existing_code'].rstrip() + "\n"
improved_code = suggestion['improved_code'].rstrip() + "\n"
diff = difflib.unified_diff(existing_code.split('\n'),
improved_code.split('\n'), n=999)
patch_orig = "\n".join(diff)
patch = "\n".join(patch_orig.splitlines()[5:]).strip('\n')
example_code = ""
example_code += f"```diff\n{patch.rstrip()}\n```\n"
if i == 0:
pr_body += f"""<td>\n\n"""
else:
pr_body += f"""<tr><td>\n\n"""
suggestion_summary = suggestion['one_sentence_summary'].strip().rstrip('.')
if "'<" in suggestion_summary and ">'" in suggestion_summary:
# escape the '<' and '>' characters, otherwise they are interpreted as html tags
get_logger().info(f"Escaped suggestion summary: {suggestion_summary}")
suggestion_summary = suggestion_summary.replace("'<", "`<")
suggestion_summary = suggestion_summary.replace(">'", ">`")
if '`' in suggestion_summary:
suggestion_summary = replace_code_tags(suggestion_summary)
pr_body += f"""\n\n<details><summary>{suggestion_summary}</summary>\n\n___\n\n"""
pr_body += f"""
**{suggestion_content}**
[{relevant_file} {range_str}]({code_snippet_link})
{example_code.rstrip()}
"""
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body += f"<details><summary>Suggestion importance[1-10]: {suggestion['score']}</summary>\n\n"
pr_body += f"Why: {suggestion['score_why']}\n\n"
pr_body += f"</details>"
pr_body += f"</details>"
# # add another column for 'score'
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body += f"</td><td align=center>{suggestion['score']}\n\n"
pr_body += f"</td></tr>"
counter_suggestions += 1
# pr_body += "</details>"
# pr_body += """</td></tr>"""
pr_body += """</tr></tbody></table>"""
return pr_body
except Exception as e:
get_logger().info(f"Failed to publish summarized code suggestions, error: {e}")
return ""
async def self_reflect_on_suggestions(self, suggestion_list: List, patches_diff: str, model: str) -> str:
if not suggestion_list:
return ""
try:
suggestion_str = ""
for i, suggestion in enumerate(suggestion_list):
suggestion_str += f"suggestion {i + 1}: " + str(suggestion) + '\n\n'
variables = {'suggestion_list': suggestion_list,
'suggestion_str': suggestion_str,
"diff": patches_diff,
'num_code_suggestions': len(suggestion_list),
"is_ai_metadata": get_settings().get("config.enable_ai_metadata", False)}
environment = Environment(undefined=StrictUndefined)
system_prompt_reflect = environment.from_string(
get_settings().pr_code_suggestions_reflect_prompt.system).render(
variables)
user_prompt_reflect = environment.from_string(
get_settings().pr_code_suggestions_reflect_prompt.user).render(variables)
with get_logger().contextualize(command="self_reflect_on_suggestions"):
response_reflect, finish_reason_reflect = await self.ai_handler.chat_completion(model=model,
system=system_prompt_reflect,
user=user_prompt_reflect)
except Exception as e:
get_logger().info(f"Could not reflect on suggestions, error: {e}")
return ""
return response_reflect