Skip to content

Commit b19131d

Browse files
authored
Add .igammac() term entry for PyTorch Tensor Operations (Issue #7793) (#7798)
* Add .igammac() term entry for PyTorch Tensor Operations (Issue #7793) * Fix YAML formatting issues * Revise igammac documentation for clarity and detail Updated the documentation for the `torch.igammac()` function to clarify its purpose, parameters, and examples. Improved formatting and consistency throughout the text. (The entire entry had backward slashes) * Update igammac.md ---------
1 parent 8f226f3 commit b19131d

File tree

1 file changed

+98
-0
lines changed
  • content/pytorch/concepts/tensor-operations/terms/igammac

1 file changed

+98
-0
lines changed
Lines changed: 98 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,98 @@
1+
---
2+
Title: '.igammac()'
3+
Description: 'Computes the regularized upper incomplete gamma function.'
4+
Subjects:
5+
- 'Data Science'
6+
- 'Machine Learning'
7+
Tags:
8+
- 'AI'
9+
- 'Deep Learning'
10+
- 'Functions'
11+
- 'Machine Learning'
12+
- 'PyTorch'
13+
CatalogContent:
14+
- 'intro-to-py-torch-and-neural-networks'
15+
- 'paths/computer-science'
16+
---
17+
18+
The **`torch.igammac()`** function in PyTorch computes the upper regularized incomplete gamma function. This function is commonly used in probabilistic modeling, survival analysis, and statistical machine learning applications. `torch.igammac()` is an alias for `torch.special.gammaincc()`, meaning both functions compute the same values and can be used interchangeably.
19+
20+
## Syntax
21+
22+
```pseudo
23+
torch.igammac(input, other, \*, out=None)
24+
```
25+
26+
This is equivalent to:
27+
28+
```pseudo
29+
torch.special.gammaincc(input, other, \*, out=None)
30+
```
31+
32+
**Parameters:**
33+
34+
- `input` (Tensor): The first non-negative input tensor representing the shape parameter (${a}$).
35+
- `other` (Tensor): The second non-negative input tensor representing the integration limit (${x}$).
36+
- `out` (Tensor, optional): The output tensor.
37+
38+
**Return value:**
39+
40+
Returns a tensor containing the upper regularized incomplete gamma function values for each corresponding pair of elements in `input` and `other`.
41+
42+
> **Note:** Supports broadcasting to a common shape and requires float inputs. The backward pass with respect to `input` is not currently supported.
43+
44+
## Example 1: Basic Element-Wise Computation
45+
46+
In this example, `torch.igammac()` computes the upper regularized incomplete gamma function for corresponding elements of two 1D tensors:
47+
48+
```py
49+
import torch
50+
51+
a = torch.tensor([4.0])
52+
x = torch.tensor([3.0, 4.0, 5.0])
53+
54+
result = torch.igammac(a, x)
55+
print("Upper incomplete gamma:", result)
56+
57+
# Verify complementary relationship with igamma
58+
lower = torch.igamma(a, x)
59+
print("Sum of igamma and igammac:", lower + result)
60+
```
61+
62+
This code produces the following output:
63+
64+
```shell
65+
Upper incomplete gamma: tensor([0.6472, 0.4335, 0.2650])
66+
Sum of igamma and igammac: tensor([1., 1., 1.])
67+
```
68+
69+
## Example 2: Survival Probabilities
70+
71+
In this example, `torch.igammac()` calculates the survival probability (complement of CDF) for a gamma distribution at a given time point:
72+
73+
```py
74+
import torch
75+
76+
shape = torch.tensor([2.0, 3.0, 4.0])
77+
time = torch.tensor([1.5])
78+
79+
survival_prob = torch.igammac(shape, time)
80+
cdf = torch.igamma(shape, time)
81+
82+
print("Shape parameters:", shape)
83+
print("Time point:", time)
84+
print("Survival probabilities:", survival_prob)
85+
print("\nCDF values:", cdf)
86+
print("CDF + Survival:", cdf + survival_prob)
87+
```
88+
89+
The output of this code is:
90+
91+
```shell
92+
Shape parameters: tensor([2., 3., 4.])
93+
Time point: tensor([1.5])
94+
Survival probabilities: tensor([0.4422, 0.7127, 0.8221])
95+
96+
CDF values: tensor([0.5578, 0.2873, 0.1779])
97+
CDF + Survival: tensor([1., 1., 1.])
98+
```

0 commit comments

Comments
 (0)