-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist_number_guesser.py
95 lines (79 loc) · 3.29 KB
/
mnist_number_guesser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from tkinter import *
from tkinter.colorchooser import askcolor
import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"
from tensorflow.keras.models import load_model
from matplotlib import image as pltImage
import matplotlib.pyplot as plt
import skimage.io as ski_io
from skimage.transform import resize
from PIL import Image, ImageTk, ImageFilter
import numpy as np
import io
def load_MNIST_model(filepath):
return load_model(filepath)
class MNISTPain(object):
def __init__(self):
self.prediction_txt = 'Prediction: '
self.root = Tk()
self.root.resizable(False, False) # Don't allow resize
self.CANVAS_WIDTH = 280
self.CANVAS_HEIGHT = 280
self.model = load_MNIST_model('mnist_cnn_model.h5')
# Clear drawing button
self.clear_button = Button(self.root, text='Clear', command=self.clear)
self.clear_button.grid(row=0, column=0)
# Predicted num
self.predicted_num_label = Label(self.root, text=self.prediction_txt, anchor='w')
self.predicted_num_label.grid(row=0, column=1, columnspan=4, sticky='nsew')
self.canvas = Canvas(self.root, bg='white', width=self.CANVAS_WIDTH, height=self.CANVAS_HEIGHT)
self.canvas.grid(row=1, columnspan=5)
self.setup()
self.root.mainloop()
def canvas_to_ndarray(self):
# This is pretty bad... requires ghostscript and just hacked together
try:
os.remove('tmp_canvas.eps')
except:
pass
self.canvas.postscript(file='tmp_canvas.eps',
colormode='color',
width=self.CANVAS_WIDTH,
height=self.CANVAS_HEIGHT,
pagewidth=self.CANVAS_WIDTH-1,
pageheight=self.CANVAS_HEIGHT-1)
img = Image.open('tmp_canvas.eps').convert('L')
img = img.resize((28, 28), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
arr = np.array(img)
arr = np.array([(255 - x)/255. for x in arr])
return arr
def clear(self):
self.canvas.delete('all')
self.predicted_num_label['text'] = self.prediction_txt
self.old_x = None
self.old_y = None
def reset(self, event):
self.old_x = None
self.old_y = None
arr = self.canvas_to_ndarray()
pred = self.model.predict(arr.reshape(-1, 28, 28, 1))
prediction = np.argmax(pred, axis=1)[0]
percent = np.sort(pred, kind='mergesort')[0,-1] * 100
txt = '{} {} ({}%)'.format(self.prediction_txt.strip(), prediction, round(percent, 2))
self.predicted_num_label['text'] = txt
def setup(self):
self.old_x = None
self.old_y = None
self.canvas.bind('<B1-Motion>', self.paint)
self.canvas.bind('<ButtonRelease-1>', self.reset)
def paint(self, event):
self.line_width = 20
paint_color = 'black'
if self.old_x and self.old_y:
self.canvas.create_line(self.old_x, self.old_y, event.x, event.y,
width=self.line_width, fill=paint_color,
capstyle=ROUND, smooth=TRUE, splinesteps=36)
self.old_x = event.x
self.old_y = event.y
if __name__ == "__main__":
MNISTPain()