-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_dataset.py
110 lines (91 loc) · 4.07 KB
/
generate_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import random
import argparse
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.backends.cudnn as cudnn
import numpy as np
import clip
from utils import *
import ignite.distributed as idist
from TeCoA.utils import load_val_datasets, get_text_prompts_val
from diffusers import DiffusionPipeline
from diffusers.utils import pt_to_pil
def get_arguments():
parser = argparse.ArgumentParser('Generate CLIP few-training data')
# dataset
parser.add_argument('--root', type=str, default='./datasets/DATA',
help='dataset root')
parser.add_argument('--testdata', type=str, choices=['STL10', 'SUN397','StanfordCars', 'Food101',
'oxfordpet', 'Caltech256', 'flowers102',
'dtd','ImageNet','isic', 'EuroSAT', 'cropdisease'], help='test datasetname for generating data')
parser.add_argument('--use_clip_official', type=bool, default=False)
# save for generated dataset
parser.add_argument('--savedir', type=str, default='./datasets/generated_DATA', help='path for saving generated_data')
parser.add_argument('--num_shot', type=int, default=1)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--start', type=int, default=0)
args = parser.parse_args()
return args
def main():
args = get_arguments()
args.num_workers = 0
if args.num_shot > 1:
args.guidance_scale = 4.0
else:
args.guidance_scale = 7.0
print(args)
# Prepare dataset-> same few shot training dataset
# fix seed
if args.seed != None:
print("fix seed")
seed = args.seed
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
cudnn.deterministic = True
cudnn.benchmark = True
imagenet_root = '/data/datasets/ImageNet'
args.imagenet_root = imagenet_root
template = 'This is a photo of a {}'
if args.testdata in ['ImageNet']:
args.use_clip_official = True
test_dataset_name = [args.testdata]
args.savedir = os.path.join(args.savedir, f'{args.num_shot}shot', args.testdata)
if not os.path.exists(args.savedir):
os.makedirs(args.savedir)
test_dataset = load_val_datasets(args, test_dataset_name)[0]
text_list = get_text_prompts_val([test_dataset], test_dataset_name, template=template, use_clip_official=args.use_clip_official)
if hasattr(test_dataset, 'categories'):
class_names = test_dataset.categories # for caltech256
elif hasattr(test_dataset, '_classes'):
class_names = test_dataset._classes
else:
class_names = test_dataset.classes
stage1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0").to('cuda')
stage2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0", text_encoder=None).to('cuda')
text_list = text_list[0]
#generator = torch.manual_seed(1)
for idx, c in enumerate(tqdm(class_names)):
if idx < args.start:
continue
c_dir = os.path.join(args.savedir, c)
print(f'classname {c}, saved in {c_dir}')
if not os.path.exists(c_dir):
os.makedirs(c_dir)
text_prompt = text_list[idx]
prompt_embeds, negative_embeds = stage1.encode_prompt(text_prompt)
image = stage1(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, num_images_per_prompt=args.num_shot,
guidance_scale=args.guidance_scale, output_type="pt").images # 7.0 (1shot), 3.0 (more shot)
prompt_embeds = prompt_embeds.repeat(args.num_shot, 1, 1)
negative_embeds = negative_embeds.repeat(args.num_shot, 1, 1)
#print(image.shape)
image = stage2(
image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt").images #4.0
image = pt_to_pil(image)
for i in range(args.num_shot):
image[i].save(os.path.join(c_dir, f'image_{i}.jpg'))
if __name__ == '__main__':
main()