-
Notifications
You must be signed in to change notification settings - Fork 22
/
lenet_BN_sgd.log
789 lines (789 loc) · 36.4 KB
/
lenet_BN_sgd.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
I0219 20:24:25.883813 101920 caffe.cpp:108] Use GPU with device ID 0
I0219 20:24:27.258891 101920 common.cpp:22] System entropy source not available, using fallback algorithm to generate seed instead.
I0219 20:24:27.258891 101920 caffe.cpp:116] Starting Optimization
I0219 20:24:27.258891 101920 solver.cpp:32] Initializing solver from parameters:
test_iter: 100
test_interval: 500
base_lr: 0.01
display: 100
max_iter: 10000
lr_policy: "inv"
gamma: 0.0001
power: 0.75
momentum: 0.9
weight_decay: 0.0005
snapshot: 5000
snapshot_prefix: "lenet"
solver_mode: GPU
random_seed: 1234
net: "lenet_BN_train_valid.prototxt"
solver_type: SGD
delta: 1e-008
I0219 20:24:27.258891 101920 solver.cpp:77] Creating training net from net file: lenet_BN_train_valid.prototxt
E0219 20:24:27.259891 101920 upgrade_proto.cpp:603] Attempting to upgrade input file specified using deprecated transformation parameters: lenet_BN_train_valid.prototxt
I0219 20:24:27.259891 101920 upgrade_proto.cpp:606] Successfully upgraded file specified using deprecated data transformation parameters.
E0219 20:24:27.259891 101920 upgrade_proto.cpp:608] Note that future Caffe releases will only support transform_param messages for transformation fields.
I0219 20:24:27.259891 101920 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I0219 20:24:27.259891 101920 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer prob
I0219 20:24:27.259891 101920 net.cpp:275] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0219 20:24:27.259891 101920 net.cpp:39] Initializing net from parameters:
name: "LeNet"
layers {
top: "data"
top: "label"
name: "mnist"
type: DATA
data_param {
source: "mnist-train-leveldb"
batch_size: 100
}
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
}
layers {
bottom: "data"
top: "conv1"
name: "conv1"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "conv1"
top: "conv1_bn"
name: "conv1_bn"
type: BN
blobs_lr: 1
blobs_lr: 1
weight_decay: 0
weight_decay: 0
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0
}
}
}
layers {
bottom: "conv1_bn"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2"
name: "conv2"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "conv2"
top: "conv2_bn"
name: "conv2_bn"
type: BN
blobs_lr: 1
blobs_lr: 1
weight_decay: 0
weight_decay: 0
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0
}
}
}
layers {
bottom: "conv2_bn"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "ip1"
name: "ip1"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "ip1"
top: "ip1"
name: "relu1"
type: RELU
}
layers {
bottom: "ip1"
top: "ip2"
name: "ip2"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "ip2"
bottom: "label"
name: "loss"
type: SOFTMAX_LOSS
include {
phase: TRAIN
}
}
state {
phase: TRAIN
}
I0219 20:24:27.259891 101920 net.cpp:67] Creating Layer mnist
I0219 20:24:27.259891 101920 net.cpp:356] mnist -> data
I0219 20:24:27.259891 101920 net.cpp:356] mnist -> label
I0219 20:24:27.259891 101920 net.cpp:96] Setting up mnist
I0219 20:24:27.259891 101920 data_layer.cpp:46] Opening leveldb mnist-train-leveldb
I0219 20:24:27.266892 101920 data_layer.cpp:130] output data size: 100,1,28,28
I0219 20:24:27.266892 101920 net.cpp:103] Top shape: 100 1 28 28 (78400)
I0219 20:24:27.266892 101920 net.cpp:103] Top shape: 100 1 1 1 (100)
I0219 20:24:27.266892 101920 net.cpp:67] Creating Layer conv1
I0219 20:24:27.266892 101920 net.cpp:394] conv1 <- data
I0219 20:24:27.266892 101920 net.cpp:356] conv1 -> conv1
I0219 20:24:27.266892 101920 net.cpp:96] Setting up conv1
I0219 20:24:27.529907 101920 net.cpp:103] Top shape: 100 20 24 24 (1152000)
I0219 20:24:27.529907 101920 net.cpp:67] Creating Layer conv1_bn
I0219 20:24:27.529907 101920 net.cpp:394] conv1_bn <- conv1
I0219 20:24:27.529907 101920 net.cpp:356] conv1_bn -> conv1_bn
I0219 20:24:27.529907 101920 net.cpp:96] Setting up conv1_bn
I0219 20:24:27.529907 101920 net.cpp:103] Top shape: 100 20 24 24 (1152000)
I0219 20:24:27.529907 101920 net.cpp:67] Creating Layer pool1
I0219 20:24:27.529907 101920 net.cpp:394] pool1 <- conv1_bn
I0219 20:24:27.529907 101920 net.cpp:356] pool1 -> pool1
I0219 20:24:27.529907 101920 net.cpp:96] Setting up pool1
I0219 20:24:27.529907 101920 net.cpp:103] Top shape: 100 20 12 12 (288000)
I0219 20:24:27.529907 101920 net.cpp:67] Creating Layer conv2
I0219 20:24:27.529907 101920 net.cpp:394] conv2 <- pool1
I0219 20:24:27.529907 101920 net.cpp:356] conv2 -> conv2
I0219 20:24:27.529907 101920 net.cpp:96] Setting up conv2
I0219 20:24:27.529907 101920 net.cpp:103] Top shape: 100 50 8 8 (320000)
I0219 20:24:27.530907 101920 net.cpp:67] Creating Layer conv2_bn
I0219 20:24:27.530907 101920 net.cpp:394] conv2_bn <- conv2
I0219 20:24:27.530907 101920 net.cpp:356] conv2_bn -> conv2_bn
I0219 20:24:27.530907 101920 net.cpp:96] Setting up conv2_bn
I0219 20:24:27.530907 101920 net.cpp:103] Top shape: 100 50 8 8 (320000)
I0219 20:24:27.530907 101920 net.cpp:67] Creating Layer pool2
I0219 20:24:27.530907 101920 net.cpp:394] pool2 <- conv2_bn
I0219 20:24:27.530907 101920 net.cpp:356] pool2 -> pool2
I0219 20:24:27.530907 101920 net.cpp:96] Setting up pool2
I0219 20:24:27.530907 101920 net.cpp:103] Top shape: 100 50 4 4 (80000)
I0219 20:24:27.530907 101920 net.cpp:67] Creating Layer ip1
I0219 20:24:27.530907 101920 net.cpp:394] ip1 <- pool2
I0219 20:24:27.530907 101920 net.cpp:356] ip1 -> ip1
I0219 20:24:27.530907 101920 net.cpp:96] Setting up ip1
I0219 20:24:27.533907 101920 net.cpp:103] Top shape: 100 500 1 1 (50000)
I0219 20:24:27.533907 101920 net.cpp:67] Creating Layer relu1
I0219 20:24:27.533907 101920 net.cpp:394] relu1 <- ip1
I0219 20:24:27.533907 101920 net.cpp:345] relu1 -> ip1 (in-place)
I0219 20:24:27.533907 101920 net.cpp:96] Setting up relu1
I0219 20:24:27.533907 101920 net.cpp:103] Top shape: 100 500 1 1 (50000)
I0219 20:24:27.533907 101920 net.cpp:67] Creating Layer ip2
I0219 20:24:27.534907 101920 net.cpp:394] ip2 <- ip1
I0219 20:24:27.534907 101920 net.cpp:356] ip2 -> ip2
I0219 20:24:27.534907 101920 net.cpp:96] Setting up ip2
I0219 20:24:27.534907 101920 net.cpp:103] Top shape: 100 10 1 1 (1000)
I0219 20:24:27.534907 101920 net.cpp:67] Creating Layer loss
I0219 20:24:27.534907 101920 net.cpp:394] loss <- ip2
I0219 20:24:27.534907 101920 net.cpp:394] loss <- label
I0219 20:24:27.534907 101920 net.cpp:356] loss -> (automatic)
I0219 20:24:27.534907 101920 net.cpp:96] Setting up loss
I0219 20:24:27.534907 101920 net.cpp:103] Top shape: 1 1 1 1 (1)
I0219 20:24:27.534907 101920 net.cpp:109] with loss weight 1
I0219 20:24:27.534907 101920 net.cpp:170] loss needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] ip2 needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] relu1 needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] ip1 needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] pool2 needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] conv2_bn needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] conv2 needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] pool1 needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] conv1_bn needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:170] conv1 needs backward computation.
I0219 20:24:27.534907 101920 net.cpp:172] mnist does not need backward computation.
I0219 20:24:27.534907 101920 net.cpp:467] Collecting Learning Rate and Weight Decay.
I0219 20:24:27.534907 101920 net.cpp:219] Network initialization done.
I0219 20:24:27.534907 101920 net.cpp:220] Memory required for data: 13966004
E0219 20:24:27.534907 101920 upgrade_proto.cpp:603] Attempting to upgrade input file specified using deprecated transformation parameters: lenet_BN_train_valid.prototxt
I0219 20:24:27.534907 101920 upgrade_proto.cpp:606] Successfully upgraded file specified using deprecated data transformation parameters.
E0219 20:24:27.534907 101920 upgrade_proto.cpp:608] Note that future Caffe releases will only support transform_param messages for transformation fields.
I0219 20:24:27.534907 101920 solver.cpp:161] Creating test net (#0) specified by net file: lenet_BN_train_valid.prototxt
I0219 20:24:27.535907 101920 net.cpp:275] The NetState phase (1) differed from the phase (0) specified by a rule in layer mnist
I0219 20:24:27.535907 101920 net.cpp:275] The NetState phase (1) differed from the phase (0) specified by a rule in layer loss
I0219 20:24:27.535907 101920 net.cpp:39] Initializing net from parameters:
name: "LeNet"
layers {
top: "data"
top: "label"
name: "mnist"
type: DATA
data_param {
source: "mnist-test-leveldb"
batch_size: 100
}
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
}
layers {
bottom: "data"
top: "conv1"
name: "conv1"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "conv1"
top: "conv1_bn"
name: "conv1_bn"
type: BN
blobs_lr: 1
blobs_lr: 1
weight_decay: 0
weight_decay: 0
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0
}
}
}
layers {
bottom: "conv1_bn"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2"
name: "conv2"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "conv2"
top: "conv2_bn"
name: "conv2_bn"
type: BN
blobs_lr: 1
blobs_lr: 1
weight_decay: 0
weight_decay: 0
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0
}
}
}
layers {
bottom: "conv2_bn"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "ip1"
name: "ip1"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "ip1"
top: "ip1"
name: "relu1"
type: RELU
}
layers {
bottom: "ip1"
top: "ip2"
name: "ip2"
type: INNER_PRODUCT
blobs_lr: 1
blobs_lr: 2
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layers {
bottom: "ip2"
top: "prob"
name: "prob"
type: SOFTMAX
include {
phase: TEST
}
}
layers {
bottom: "prob"
bottom: "label"
top: "accuracy"
name: "accuracy"
type: ACCURACY
include {
phase: TEST
}
}
state {
phase: TEST
}
I0219 20:24:27.535907 101920 net.cpp:67] Creating Layer mnist
I0219 20:24:27.571909 101920 net.cpp:356] mnist -> data
I0219 20:24:27.571909 101920 net.cpp:356] mnist -> label
I0219 20:24:27.571909 101920 net.cpp:96] Setting up mnist
I0219 20:24:27.571909 101920 data_layer.cpp:46] Opening leveldb mnist-test-leveldb
I0219 20:24:27.578910 101920 data_layer.cpp:130] output data size: 100,1,28,28
I0219 20:24:27.578910 101920 net.cpp:103] Top shape: 100 1 28 28 (78400)
I0219 20:24:27.578910 101920 net.cpp:103] Top shape: 100 1 1 1 (100)
I0219 20:24:27.578910 101920 net.cpp:67] Creating Layer conv1
I0219 20:24:27.578910 101920 net.cpp:394] conv1 <- data
I0219 20:24:27.578910 101920 net.cpp:356] conv1 -> conv1
I0219 20:24:27.578910 101920 net.cpp:96] Setting up conv1
I0219 20:24:27.578910 101920 net.cpp:103] Top shape: 100 20 24 24 (1152000)
I0219 20:24:27.578910 101920 net.cpp:67] Creating Layer conv1_bn
I0219 20:24:27.578910 101920 net.cpp:394] conv1_bn <- conv1
I0219 20:24:27.578910 101920 net.cpp:356] conv1_bn -> conv1_bn
I0219 20:24:27.578910 101920 net.cpp:96] Setting up conv1_bn
I0219 20:24:27.578910 101920 net.cpp:103] Top shape: 100 20 24 24 (1152000)
I0219 20:24:27.578910 101920 net.cpp:67] Creating Layer pool1
I0219 20:24:27.578910 101920 net.cpp:394] pool1 <- conv1_bn
I0219 20:24:27.578910 101920 net.cpp:356] pool1 -> pool1
I0219 20:24:27.578910 101920 net.cpp:96] Setting up pool1
I0219 20:24:27.578910 101920 net.cpp:103] Top shape: 100 20 12 12 (288000)
I0219 20:24:27.578910 101920 net.cpp:67] Creating Layer conv2
I0219 20:24:27.578910 101920 net.cpp:394] conv2 <- pool1
I0219 20:24:27.578910 101920 net.cpp:356] conv2 -> conv2
I0219 20:24:27.578910 101920 net.cpp:96] Setting up conv2
I0219 20:24:27.579910 101920 net.cpp:103] Top shape: 100 50 8 8 (320000)
I0219 20:24:27.579910 101920 net.cpp:67] Creating Layer conv2_bn
I0219 20:24:27.579910 101920 net.cpp:394] conv2_bn <- conv2
I0219 20:24:27.579910 101920 net.cpp:356] conv2_bn -> conv2_bn
I0219 20:24:27.579910 101920 net.cpp:96] Setting up conv2_bn
I0219 20:24:27.579910 101920 net.cpp:103] Top shape: 100 50 8 8 (320000)
I0219 20:24:27.579910 101920 net.cpp:67] Creating Layer pool2
I0219 20:24:27.579910 101920 net.cpp:394] pool2 <- conv2_bn
I0219 20:24:27.579910 101920 net.cpp:356] pool2 -> pool2
I0219 20:24:27.579910 101920 net.cpp:96] Setting up pool2
I0219 20:24:27.579910 101920 net.cpp:103] Top shape: 100 50 4 4 (80000)
I0219 20:24:27.579910 101920 net.cpp:67] Creating Layer ip1
I0219 20:24:27.579910 101920 net.cpp:394] ip1 <- pool2
I0219 20:24:27.579910 101920 net.cpp:356] ip1 -> ip1
I0219 20:24:27.579910 101920 net.cpp:96] Setting up ip1
I0219 20:24:27.582911 101920 net.cpp:103] Top shape: 100 500 1 1 (50000)
I0219 20:24:27.582911 101920 net.cpp:67] Creating Layer relu1
I0219 20:24:27.582911 101920 net.cpp:394] relu1 <- ip1
I0219 20:24:27.582911 101920 net.cpp:345] relu1 -> ip1 (in-place)
I0219 20:24:27.582911 101920 net.cpp:96] Setting up relu1
I0219 20:24:27.582911 101920 net.cpp:103] Top shape: 100 500 1 1 (50000)
I0219 20:24:27.582911 101920 net.cpp:67] Creating Layer ip2
I0219 20:24:27.582911 101920 net.cpp:394] ip2 <- ip1
I0219 20:24:27.582911 101920 net.cpp:356] ip2 -> ip2
I0219 20:24:27.582911 101920 net.cpp:96] Setting up ip2
I0219 20:24:27.582911 101920 net.cpp:103] Top shape: 100 10 1 1 (1000)
I0219 20:24:27.582911 101920 net.cpp:67] Creating Layer prob
I0219 20:24:27.582911 101920 net.cpp:394] prob <- ip2
I0219 20:24:27.582911 101920 net.cpp:356] prob -> prob
I0219 20:24:27.582911 101920 net.cpp:96] Setting up prob
I0219 20:24:27.582911 101920 net.cpp:103] Top shape: 100 10 1 1 (1000)
I0219 20:24:27.582911 101920 net.cpp:67] Creating Layer accuracy
I0219 20:24:27.582911 101920 net.cpp:394] accuracy <- prob
I0219 20:24:27.582911 101920 net.cpp:394] accuracy <- label
I0219 20:24:27.582911 101920 net.cpp:356] accuracy -> accuracy
I0219 20:24:27.582911 101920 net.cpp:96] Setting up accuracy
I0219 20:24:27.582911 101920 net.cpp:103] Top shape: 1 1 1 1 (1)
I0219 20:24:27.582911 101920 net.cpp:172] accuracy does not need backward computation.
I0219 20:24:27.582911 101920 net.cpp:172] prob does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] ip2 does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] relu1 does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] ip1 does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] pool2 does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] conv2_bn does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] conv2 does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] pool1 does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] conv1_bn does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] conv1 does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:172] mnist does not need backward computation.
I0219 20:24:27.635913 101920 net.cpp:208] This network produces output accuracy
I0219 20:24:27.635913 101920 net.cpp:467] Collecting Learning Rate and Weight Decay.
I0219 20:24:27.635913 101920 net.cpp:219] Network initialization done.
I0219 20:24:27.635913 101920 net.cpp:220] Memory required for data: 13970004
I0219 20:24:27.635913 101920 solver.cpp:51] Solver scaffolding done.
I0219 20:24:27.635913 101920 solver.cpp:170] Solving LeNet
I0219 20:24:27.635913 101920 solver.cpp:287] Iteration 0, Testing net (#0)
I0219 20:24:29.118999 101920 solver.cpp:338] Test net output #0: accuracy = 0.0916
I0219 20:24:29.138000 101920 solver.cpp:231] Iteration 0, loss = 2.30219
I0219 20:24:29.138000 101920 solver.cpp:442] Iteration 0, lr = 0.01
I0219 20:24:32.218175 101920 solver.cpp:231] Iteration 100, loss = 0.323378
I0219 20:24:32.218175 101920 solver.cpp:442] Iteration 100, lr = 0.00992565
I0219 20:24:35.126341 101920 solver.cpp:231] Iteration 200, loss = 0.23759
I0219 20:24:35.126341 101920 solver.cpp:442] Iteration 200, lr = 0.00985258
I0219 20:24:38.196517 101920 solver.cpp:231] Iteration 300, loss = 0.149019
I0219 20:24:38.196517 101920 solver.cpp:442] Iteration 300, lr = 0.00978075
I0219 20:24:41.343698 101920 solver.cpp:231] Iteration 400, loss = 0.100363
I0219 20:24:41.343698 101920 solver.cpp:442] Iteration 400, lr = 0.00971013
I0219 20:24:44.105855 101920 solver.cpp:287] Iteration 500, Testing net (#0)
I0219 20:24:45.333925 101920 solver.cpp:338] Test net output #0: accuracy = 0.9754
I0219 20:24:45.338927 101920 solver.cpp:231] Iteration 500, loss = 0.0856673
I0219 20:24:45.338927 101920 solver.cpp:442] Iteration 500, lr = 0.00964069
I0219 20:24:48.222090 101920 solver.cpp:231] Iteration 600, loss = 0.137357
I0219 20:24:48.222090 101920 solver.cpp:442] Iteration 600, lr = 0.0095724
I0219 20:24:50.863242 101920 solver.cpp:231] Iteration 700, loss = 0.0835702
I0219 20:24:50.863242 101920 solver.cpp:442] Iteration 700, lr = 0.00950522
I0219 20:24:53.670403 101920 solver.cpp:231] Iteration 800, loss = 0.114954
I0219 20:24:53.670403 101920 solver.cpp:442] Iteration 800, lr = 0.00943913
I0219 20:24:56.469563 101920 solver.cpp:231] Iteration 900, loss = 0.0932496
I0219 20:24:56.470562 101920 solver.cpp:442] Iteration 900, lr = 0.00937411
I0219 20:24:59.068711 101920 solver.cpp:287] Iteration 1000, Testing net (#0)
I0219 20:25:00.195775 101920 solver.cpp:338] Test net output #0: accuracy = 0.9816
I0219 20:25:00.206776 101920 solver.cpp:231] Iteration 1000, loss = 0.0435796
I0219 20:25:00.206776 101920 solver.cpp:442] Iteration 1000, lr = 0.00931012
I0219 20:25:03.094941 101920 solver.cpp:231] Iteration 1100, loss = 0.0376325
I0219 20:25:03.094941 101920 solver.cpp:442] Iteration 1100, lr = 0.00924715
I0219 20:25:05.844099 101920 solver.cpp:231] Iteration 1200, loss = 0.0942016
I0219 20:25:05.844099 101920 solver.cpp:442] Iteration 1200, lr = 0.00918515
I0219 20:25:08.707262 101920 solver.cpp:231] Iteration 1300, loss = 0.0521515
I0219 20:25:08.707262 101920 solver.cpp:442] Iteration 1300, lr = 0.00912412
I0219 20:25:11.303411 101920 solver.cpp:231] Iteration 1400, loss = 0.0771083
I0219 20:25:11.303411 101920 solver.cpp:442] Iteration 1400, lr = 0.00906403
I0219 20:25:13.987565 101920 solver.cpp:287] Iteration 1500, Testing net (#0)
I0219 20:25:15.120630 101920 solver.cpp:338] Test net output #0: accuracy = 0.985
I0219 20:25:15.197633 101920 solver.cpp:231] Iteration 1500, loss = 0.06446
I0219 20:25:15.197633 101920 solver.cpp:442] Iteration 1500, lr = 0.00900485
I0219 20:25:17.791782 101920 solver.cpp:231] Iteration 1600, loss = 0.031064
I0219 20:25:17.791782 101920 solver.cpp:442] Iteration 1600, lr = 0.00894657
I0219 20:25:20.486937 101920 solver.cpp:231] Iteration 1700, loss = 0.0331084
I0219 20:25:20.486937 101920 solver.cpp:442] Iteration 1700, lr = 0.00888916
I0219 20:25:23.185091 101920 solver.cpp:231] Iteration 1800, loss = 0.0699748
I0219 20:25:23.185091 101920 solver.cpp:442] Iteration 1800, lr = 0.0088326
I0219 20:25:25.974251 101920 solver.cpp:231] Iteration 1900, loss = 0.0318849
I0219 20:25:25.974251 101920 solver.cpp:442] Iteration 1900, lr = 0.00877687
I0219 20:25:28.543397 101920 solver.cpp:287] Iteration 2000, Testing net (#0)
I0219 20:25:29.640460 101920 solver.cpp:338] Test net output #0: accuracy = 0.9878
I0219 20:25:29.661461 101920 solver.cpp:231] Iteration 2000, loss = 0.0629812
I0219 20:25:29.661461 101920 solver.cpp:442] Iteration 2000, lr = 0.00872196
I0219 20:25:32.453620 101920 solver.cpp:231] Iteration 2100, loss = 0.0518312
I0219 20:25:32.453620 101920 solver.cpp:442] Iteration 2100, lr = 0.00866784
I0219 20:25:35.086771 101920 solver.cpp:231] Iteration 2200, loss = 0.0227572
I0219 20:25:35.086771 101920 solver.cpp:442] Iteration 2200, lr = 0.0086145
I0219 20:25:37.841929 101920 solver.cpp:231] Iteration 2300, loss = 0.0244286
I0219 20:25:37.841929 101920 solver.cpp:442] Iteration 2300, lr = 0.00856192
I0219 20:25:40.717093 101920 solver.cpp:231] Iteration 2400, loss = 0.0507805
I0219 20:25:40.717093 101920 solver.cpp:442] Iteration 2400, lr = 0.00851008
I0219 20:25:43.349244 101920 solver.cpp:287] Iteration 2500, Testing net (#0)
I0219 20:25:44.497309 101920 solver.cpp:338] Test net output #0: accuracy = 0.9859
I0219 20:25:44.510310 101920 solver.cpp:231] Iteration 2500, loss = 0.0219777
I0219 20:25:44.510310 101920 solver.cpp:442] Iteration 2500, lr = 0.00845897
I0219 20:25:47.213465 101920 solver.cpp:231] Iteration 2600, loss = 0.0499731
I0219 20:25:47.213465 101920 solver.cpp:442] Iteration 2600, lr = 0.00840857
I0219 20:25:49.963623 101920 solver.cpp:231] Iteration 2700, loss = 0.0391577
I0219 20:25:49.963623 101920 solver.cpp:442] Iteration 2700, lr = 0.00835886
I0219 20:25:52.668777 101920 solver.cpp:231] Iteration 2800, loss = 0.0185332
I0219 20:25:52.668777 101920 solver.cpp:442] Iteration 2800, lr = 0.00830984
I0219 20:25:55.485939 101920 solver.cpp:231] Iteration 2900, loss = 0.0167396
I0219 20:25:55.485939 101920 solver.cpp:442] Iteration 2900, lr = 0.00826148
I0219 20:25:58.029083 101920 solver.cpp:287] Iteration 3000, Testing net (#0)
I0219 20:25:59.158149 101920 solver.cpp:338] Test net output #0: accuracy = 0.987
I0219 20:25:59.163148 101920 solver.cpp:231] Iteration 3000, loss = 0.0298753
I0219 20:25:59.163148 101920 solver.cpp:442] Iteration 3000, lr = 0.00821377
I0219 20:26:01.771297 101920 solver.cpp:231] Iteration 3100, loss = 0.0173053
I0219 20:26:01.771297 101920 solver.cpp:442] Iteration 3100, lr = 0.0081667
I0219 20:26:04.541456 101920 solver.cpp:231] Iteration 3200, loss = 0.0369976
I0219 20:26:04.541456 101920 solver.cpp:442] Iteration 3200, lr = 0.00812025
I0219 20:26:07.370617 101920 solver.cpp:231] Iteration 3300, loss = 0.0333898
I0219 20:26:07.371618 101920 solver.cpp:442] Iteration 3300, lr = 0.00807442
I0219 20:26:10.047771 101920 solver.cpp:231] Iteration 3400, loss = 0.015276
I0219 20:26:10.048771 101920 solver.cpp:442] Iteration 3400, lr = 0.00802918
I0219 20:26:12.734925 101920 solver.cpp:287] Iteration 3500, Testing net (#0)
I0219 20:26:13.852988 101920 solver.cpp:338] Test net output #0: accuracy = 0.9898
I0219 20:26:13.856988 101920 solver.cpp:231] Iteration 3500, loss = 0.00888279
I0219 20:26:13.856988 101920 solver.cpp:442] Iteration 3500, lr = 0.00798454
I0219 20:26:16.533143 101920 solver.cpp:231] Iteration 3600, loss = 0.0153337
I0219 20:26:16.533143 101920 solver.cpp:442] Iteration 3600, lr = 0.00794046
I0219 20:26:19.231297 101920 solver.cpp:231] Iteration 3700, loss = 0.0163696
I0219 20:26:19.231297 101920 solver.cpp:442] Iteration 3700, lr = 0.00789695
I0219 20:26:21.892448 101920 solver.cpp:231] Iteration 3800, loss = 0.0274265
I0219 20:26:21.892448 101920 solver.cpp:442] Iteration 3800, lr = 0.007854
I0219 20:26:24.654606 101920 solver.cpp:231] Iteration 3900, loss = 0.0280846
I0219 20:26:24.654606 101920 solver.cpp:442] Iteration 3900, lr = 0.00781158
I0219 20:26:27.394763 101920 solver.cpp:287] Iteration 4000, Testing net (#0)
I0219 20:26:28.608832 101920 solver.cpp:338] Test net output #0: accuracy = 0.9892
I0219 20:26:28.620833 101920 solver.cpp:231] Iteration 4000, loss = 0.0119719
I0219 20:26:28.620833 101920 solver.cpp:442] Iteration 4000, lr = 0.00776969
I0219 20:26:31.207981 101920 solver.cpp:231] Iteration 4100, loss = 0.00557243
I0219 20:26:31.207981 101920 solver.cpp:442] Iteration 4100, lr = 0.00772833
I0219 20:26:33.999141 101920 solver.cpp:231] Iteration 4200, loss = 0.00751942
I0219 20:26:33.999141 101920 solver.cpp:442] Iteration 4200, lr = 0.00768748
I0219 20:26:36.629292 101920 solver.cpp:231] Iteration 4300, loss = 0.0159704
I0219 20:26:36.629292 101920 solver.cpp:442] Iteration 4300, lr = 0.00764712
I0219 20:26:39.398449 101920 solver.cpp:231] Iteration 4400, loss = 0.0195673
I0219 20:26:39.398449 101920 solver.cpp:442] Iteration 4400, lr = 0.00760726
I0219 20:26:42.017599 101920 solver.cpp:287] Iteration 4500, Testing net (#0)
I0219 20:26:43.123662 101920 solver.cpp:338] Test net output #0: accuracy = 0.9899
I0219 20:26:43.137663 101920 solver.cpp:231] Iteration 4500, loss = 0.0226567
I0219 20:26:43.137663 101920 solver.cpp:442] Iteration 4500, lr = 0.00756788
I0219 20:26:45.888821 101920 solver.cpp:231] Iteration 4600, loss = 0.00898327
I0219 20:26:45.888821 101920 solver.cpp:442] Iteration 4600, lr = 0.00752897
I0219 20:26:48.785986 101920 solver.cpp:231] Iteration 4700, loss = 0.00437807
I0219 20:26:48.786986 101920 solver.cpp:442] Iteration 4700, lr = 0.00749052
I0219 20:26:51.433138 101920 solver.cpp:231] Iteration 4800, loss = 0.00555685
I0219 20:26:51.433138 101920 solver.cpp:442] Iteration 4800, lr = 0.00745253
I0219 20:26:54.230298 101920 solver.cpp:231] Iteration 4900, loss = 0.0127988
I0219 20:26:54.230298 101920 solver.cpp:442] Iteration 4900, lr = 0.00741498
I0219 20:26:56.887450 101920 solver.cpp:356] Snapshotting to lenet_iter_5000.caffemodel
I0219 20:26:56.895450 101920 solver.cpp:363] Snapshotting solver state to lenet_iter_5000.caffemodel.solverstate
I0219 20:26:56.899451 101920 solver.cpp:287] Iteration 5000, Testing net (#0)
I0219 20:26:58.003515 101920 solver.cpp:338] Test net output #0: accuracy = 0.9908
I0219 20:26:58.013514 101920 solver.cpp:231] Iteration 5000, loss = 0.015663
I0219 20:26:58.013514 101920 solver.cpp:442] Iteration 5000, lr = 0.00737788
I0219 20:27:00.788673 101920 solver.cpp:231] Iteration 5100, loss = 0.0169028
I0219 20:27:00.788673 101920 solver.cpp:442] Iteration 5100, lr = 0.0073412
I0219 20:27:03.455826 101920 solver.cpp:231] Iteration 5200, loss = 0.00675082
I0219 20:27:03.455826 101920 solver.cpp:442] Iteration 5200, lr = 0.00730495
I0219 20:27:06.232985 101920 solver.cpp:231] Iteration 5300, loss = 0.00372812
I0219 20:27:06.232985 101920 solver.cpp:442] Iteration 5300, lr = 0.00726911
I0219 20:27:08.875135 101920 solver.cpp:231] Iteration 5400, loss = 0.00410843
I0219 20:27:08.875135 101920 solver.cpp:442] Iteration 5400, lr = 0.00723368
I0219 20:27:11.657294 101920 solver.cpp:287] Iteration 5500, Testing net (#0)
I0219 20:27:12.787359 101920 solver.cpp:338] Test net output #0: accuracy = 0.9887
I0219 20:27:12.806360 101920 solver.cpp:231] Iteration 5500, loss = 0.0117428
I0219 20:27:12.807360 101920 solver.cpp:442] Iteration 5500, lr = 0.00719865
I0219 20:27:15.413509 101920 solver.cpp:231] Iteration 5600, loss = 0.0132238
I0219 20:27:15.413509 101920 solver.cpp:442] Iteration 5600, lr = 0.00716402
I0219 20:27:18.219671 101920 solver.cpp:231] Iteration 5700, loss = 0.0137579
I0219 20:27:18.219671 101920 solver.cpp:442] Iteration 5700, lr = 0.00712977
I0219 20:27:20.808818 101920 solver.cpp:231] Iteration 5800, loss = 0.00497267
I0219 20:27:20.808818 101920 solver.cpp:442] Iteration 5800, lr = 0.0070959
I0219 20:27:23.590977 101920 solver.cpp:231] Iteration 5900, loss = 0.00294243
I0219 20:27:23.590977 101920 solver.cpp:442] Iteration 5900, lr = 0.0070624
I0219 20:27:26.161124 101920 solver.cpp:287] Iteration 6000, Testing net (#0)
I0219 20:27:27.281188 101920 solver.cpp:338] Test net output #0: accuracy = 0.9897
I0219 20:27:27.287189 101920 solver.cpp:231] Iteration 6000, loss = 0.00346468
I0219 20:27:27.287189 101920 solver.cpp:442] Iteration 6000, lr = 0.00702927
I0219 20:27:30.089349 101920 solver.cpp:231] Iteration 6100, loss = 0.0104201
I0219 20:27:30.089349 101920 solver.cpp:442] Iteration 6100, lr = 0.0069965
I0219 20:27:32.643496 101920 solver.cpp:231] Iteration 6200, loss = 0.0109253
I0219 20:27:32.643496 101920 solver.cpp:442] Iteration 6200, lr = 0.00696408
I0219 20:27:35.436655 101920 solver.cpp:231] Iteration 6300, loss = 0.0113819
I0219 20:27:35.436655 101920 solver.cpp:442] Iteration 6300, lr = 0.00693201
I0219 20:27:38.090806 101920 solver.cpp:231] Iteration 6400, loss = 0.00391983
I0219 20:27:38.090806 101920 solver.cpp:442] Iteration 6400, lr = 0.00690029
I0219 20:27:40.816962 101920 solver.cpp:287] Iteration 6500, Testing net (#0)
I0219 20:27:41.913025 101920 solver.cpp:338] Test net output #0: accuracy = 0.9903
I0219 20:27:41.925026 101920 solver.cpp:231] Iteration 6500, loss = 0.0024418
I0219 20:27:41.925026 101920 solver.cpp:442] Iteration 6500, lr = 0.0068689
I0219 20:27:44.510174 101920 solver.cpp:231] Iteration 6600, loss = 0.00319171
I0219 20:27:44.510174 101920 solver.cpp:442] Iteration 6600, lr = 0.00683784
I0219 20:27:47.298333 101920 solver.cpp:231] Iteration 6700, loss = 0.00863161
I0219 20:27:47.298333 101920 solver.cpp:442] Iteration 6700, lr = 0.00680711
I0219 20:27:49.879482 101920 solver.cpp:231] Iteration 6800, loss = 0.00959494
I0219 20:27:49.879482 101920 solver.cpp:442] Iteration 6800, lr = 0.0067767
I0219 20:27:52.699642 101920 solver.cpp:231] Iteration 6900, loss = 0.0102416
I0219 20:27:52.699642 101920 solver.cpp:442] Iteration 6900, lr = 0.0067466
I0219 20:27:55.473801 101920 solver.cpp:287] Iteration 7000, Testing net (#0)
I0219 20:27:56.587864 101920 solver.cpp:338] Test net output #0: accuracy = 0.9914
I0219 20:27:56.663869 101920 solver.cpp:231] Iteration 7000, loss = 0.0030493
I0219 20:27:56.663869 101920 solver.cpp:442] Iteration 7000, lr = 0.00671681
I0219 20:27:59.254017 101920 solver.cpp:231] Iteration 7100, loss = 0.00213348
I0219 20:27:59.254017 101920 solver.cpp:442] Iteration 7100, lr = 0.00668733
I0219 20:28:02.059177 101920 solver.cpp:231] Iteration 7200, loss = 0.00286794
I0219 20:28:02.059177 101920 solver.cpp:442] Iteration 7200, lr = 0.00665815
I0219 20:28:04.666326 101920 solver.cpp:231] Iteration 7300, loss = 0.00784281
I0219 20:28:04.666326 101920 solver.cpp:442] Iteration 7300, lr = 0.00662927
I0219 20:28:07.445485 101920 solver.cpp:231] Iteration 7400, loss = 0.00841386
I0219 20:28:07.445485 101920 solver.cpp:442] Iteration 7400, lr = 0.00660067
I0219 20:28:09.988631 101920 solver.cpp:287] Iteration 7500, Testing net (#0)
I0219 20:28:11.104696 101920 solver.cpp:338] Test net output #0: accuracy = 0.991
I0219 20:28:11.110695 101920 solver.cpp:231] Iteration 7500, loss = 0.00848323
I0219 20:28:11.110695 101920 solver.cpp:442] Iteration 7500, lr = 0.00657236
I0219 20:28:13.898854 101920 solver.cpp:231] Iteration 7600, loss = 0.00240813
I0219 20:28:13.898854 101920 solver.cpp:442] Iteration 7600, lr = 0.00654433
I0219 20:28:16.455001 101920 solver.cpp:231] Iteration 7700, loss = 0.00191419
I0219 20:28:16.455001 101920 solver.cpp:442] Iteration 7700, lr = 0.00651658
I0219 20:28:19.070150 101920 solver.cpp:231] Iteration 7800, loss = 0.00295593
I0219 20:28:19.070150 101920 solver.cpp:442] Iteration 7800, lr = 0.00648911
I0219 20:28:21.787307 101920 solver.cpp:231] Iteration 7900, loss = 0.00673551
I0219 20:28:21.787307 101920 solver.cpp:442] Iteration 7900, lr = 0.0064619
I0219 20:28:24.451458 101920 solver.cpp:287] Iteration 8000, Testing net (#0)
I0219 20:28:25.621526 101920 solver.cpp:338] Test net output #0: accuracy = 0.9913
I0219 20:28:25.665527 101920 solver.cpp:231] Iteration 8000, loss = 0.00720231
I0219 20:28:25.665527 101920 solver.cpp:442] Iteration 8000, lr = 0.00643496
I0219 20:28:28.343682 101920 solver.cpp:231] Iteration 8100, loss = 0.00756929
I0219 20:28:28.343682 101920 solver.cpp:442] Iteration 8100, lr = 0.00640827
I0219 20:28:31.128840 101920 solver.cpp:231] Iteration 8200, loss = 0.00201314
I0219 20:28:31.128840 101920 solver.cpp:442] Iteration 8200, lr = 0.00638185
I0219 20:28:33.700988 101920 solver.cpp:231] Iteration 8300, loss = 0.00172469
I0219 20:28:33.700988 101920 solver.cpp:442] Iteration 8300, lr = 0.00635568
I0219 20:28:36.505147 101920 solver.cpp:231] Iteration 8400, loss = 0.00279293
I0219 20:28:36.505147 101920 solver.cpp:442] Iteration 8400, lr = 0.00632975
I0219 20:28:39.076295 101920 solver.cpp:287] Iteration 8500, Testing net (#0)
I0219 20:28:40.196359 101920 solver.cpp:338] Test net output #0: accuracy = 0.9904
I0219 20:28:40.201359 101920 solver.cpp:231] Iteration 8500, loss = 0.00631739
I0219 20:28:40.201359 101920 solver.cpp:442] Iteration 8500, lr = 0.00630407
I0219 20:28:42.982518 101920 solver.cpp:231] Iteration 8600, loss = 0.00666775
I0219 20:28:42.982518 101920 solver.cpp:442] Iteration 8600, lr = 0.00627864
I0219 20:28:45.588667 101920 solver.cpp:231] Iteration 8700, loss = 0.00658094
I0219 20:28:45.588667 101920 solver.cpp:442] Iteration 8700, lr = 0.00625344
I0219 20:28:48.405828 101920 solver.cpp:231] Iteration 8800, loss = 0.00169822
I0219 20:28:48.406828 101920 solver.cpp:442] Iteration 8800, lr = 0.00622847
I0219 20:28:51.037979 101920 solver.cpp:231] Iteration 8900, loss = 0.00170645
I0219 20:28:51.037979 101920 solver.cpp:442] Iteration 8900, lr = 0.00620374
I0219 20:28:53.760134 101920 solver.cpp:287] Iteration 9000, Testing net (#0)
I0219 20:28:54.887199 101920 solver.cpp:338] Test net output #0: accuracy = 0.9902
I0219 20:28:54.894199 101920 solver.cpp:231] Iteration 9000, loss = 0.00284398
I0219 20:28:54.894199 101920 solver.cpp:442] Iteration 9000, lr = 0.00617924
I0219 20:28:57.467346 101920 solver.cpp:231] Iteration 9100, loss = 0.00578002
I0219 20:28:57.467346 101920 solver.cpp:442] Iteration 9100, lr = 0.00615496
I0219 20:29:00.250506 101920 solver.cpp:231] Iteration 9200, loss = 0.00624887
I0219 20:29:00.250506 101920 solver.cpp:442] Iteration 9200, lr = 0.0061309
I0219 20:29:02.771651 101920 solver.cpp:231] Iteration 9300, loss = 0.00631996
I0219 20:29:02.771651 101920 solver.cpp:442] Iteration 9300, lr = 0.00610706
I0219 20:29:05.428802 101920 solver.cpp:231] Iteration 9400, loss = 0.00152145
I0219 20:29:05.428802 101920 solver.cpp:442] Iteration 9400, lr = 0.00608343
I0219 20:29:08.158958 101920 solver.cpp:287] Iteration 9500, Testing net (#0)
I0219 20:29:09.268021 101920 solver.cpp:338] Test net output #0: accuracy = 0.9905
I0219 20:29:09.274022 101920 solver.cpp:231] Iteration 9500, loss = 0.00170842
I0219 20:29:09.274022 101920 solver.cpp:442] Iteration 9500, lr = 0.00606002
I0219 20:29:11.904172 101920 solver.cpp:231] Iteration 9600, loss = 0.0025672
I0219 20:29:11.904172 101920 solver.cpp:442] Iteration 9600, lr = 0.00603682
I0219 20:29:14.641330 101920 solver.cpp:231] Iteration 9700, loss = 0.0057964
I0219 20:29:14.641330 101920 solver.cpp:442] Iteration 9700, lr = 0.00601382
I0219 20:29:17.284481 101920 solver.cpp:231] Iteration 9800, loss = 0.00612196
I0219 20:29:17.284481 101920 solver.cpp:442] Iteration 9800, lr = 0.00599102
I0219 20:29:20.012636 101920 solver.cpp:231] Iteration 9900, loss = 0.00597476
I0219 20:29:20.012636 101920 solver.cpp:442] Iteration 9900, lr = 0.00596843
I0219 20:29:22.656787 101920 solver.cpp:356] Snapshotting to lenet_iter_10000.caffemodel
I0219 20:29:22.663789 101920 solver.cpp:363] Snapshotting solver state to lenet_iter_10000.caffemodel.solverstate
I0219 20:29:22.673789 101920 solver.cpp:268] Iteration 10000, loss = 0.00146509
I0219 20:29:22.673789 101920 solver.cpp:287] Iteration 10000, Testing net (#0)
I0219 20:29:23.761850 101920 solver.cpp:338] Test net output #0: accuracy = 0.9909
I0219 20:29:23.761850 101920 solver.cpp:273] Optimization Done.
I0219 20:29:23.761850 101920 caffe.cpp:130] Optimization Done.