-
Notifications
You must be signed in to change notification settings - Fork 22
/
common_layers.hpp
531 lines (473 loc) · 18 KB
/
common_layers.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#ifndef CAFFE_COMMON_LAYERS_HPP_
#define CAFFE_COMMON_LAYERS_HPP_
#include <string>
#include <utility>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/data_layers.hpp"
#include "caffe/layer.hpp"
#include "caffe/loss_layers.hpp"
#include "caffe/neuron_layers.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Compute the index of the @f$ K @f$ max values for each datum across
* all dimensions @f$ (C \times H \times W) @f$.
*
* Intended for use after a classification layer to produce a prediction.
* If parameter out_max_val is set to true, output is a vector of pairs
* (max_ind, max_val) for each image.
*
* NOTE: does not implement Backwards operation.
*/
template <typename Dtype>
class ArgMaxLayer : public Layer<Dtype> {
public:
/**
* @param param provides ArgMaxParameter argmax_param,
* with ArgMaxLayer options:
* - top_k (\b optional uint, default 1).
* the number @f$ K @f$ of maximal items to output.
* - out_max_val (\b optional bool, default false).
* if set, output a vector of pairs (max_ind, max_val) for each image.
*/
explicit ArgMaxLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_ARGMAX;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
/**
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times 1 \times K \times 1) @f$ or, if out_max_val
* @f$ (N \times 2 \times K \times 1) @f$
* the computed outputs @f$
* y_n = \arg\max\limits_i x_{ni}
* @f$ (for @f$ K = 1 @f$).
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/// @brief Not implemented (non-differentiable function)
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom) {
NOT_IMPLEMENTED;
}
bool out_max_val_;
size_t top_k_;
};
/**
* @brief Batch Normalization per-channel with scale & shift linear transform.
*
*/
template <typename Dtype>
class BNLayer : public Layer<Dtype> {
public:
explicit BNLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_BN;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
// spatial mean & variance
Blob<Dtype> spatial_mean_, spatial_variance_;
// batch mean & variance
Blob<Dtype> batch_mean_, batch_variance_;
// buffer blob
Blob<Dtype> buffer_blob_;
// x_norm
Blob<Dtype> x_norm_;
// x_sum_multiplier is used to carry out sum using BLAS
Blob<Dtype> spatial_sum_multiplier_, batch_sum_multiplier_;
// dimension
int N_;
int C_;
int H_;
int W_;
// eps
Dtype var_eps_;
};
/**
* @brief Takes at least two Blob%s and concatenates them along either the num
* or channel dimension, outputting the result.
*/
template <typename Dtype>
class ConcatLayer : public Layer<Dtype> {
public:
explicit ConcatLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_CONCAT;
}
virtual inline int MinBottomBlobs() const { return 2; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
/**
* @param bottom input Blob vector (length 2+)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x_1 @f$
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x_2 @f$
* -# ...
* - K @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x_K @f$
* @param top output Blob vector (length 1)
* -# @f$ (KN \times C \times H \times W) @f$ if concat_dim == 0, or
* @f$ (N \times KC \times H \times W) @f$ if concat_dim == 1:
* the concatenated output @f$
* y = [\begin{array}{cccc} x_1 & x_2 & ... & x_K \end{array}]
* @f$
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/**
* @brief Computes the error gradient w.r.t. the concatenate inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (KN \times C \times H \times W) @f$ if concat_dim == 0, or
* @f$ (N \times KC \times H \times W) @f$ if concat_dim == 1:
* containing error gradients @f$ \frac{\partial E}{\partial y} @f$
* with respect to concatenated outputs @f$ y @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length K), into which the top gradient
* @f$ \frac{\partial E}{\partial y} @f$ is deconcatenated back to the
* inputs @f$
* \left[ \begin{array}{cccc}
* \frac{\partial E}{\partial x_1} &
* \frac{\partial E}{\partial x_2} &
* ... &
* \frac{\partial E}{\partial x_K}
* \end{array} \right] =
* \frac{\partial E}{\partial y}
* @f$
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
Blob<Dtype> col_bob_;
int count_;
int num_;
int channels_;
int height_;
int width_;
int concat_dim_;
};
/**
* @brief Compute elementwise operations, such as product and sum,
* along multiple input Blobs.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class EltwiseLayer : public Layer<Dtype> {
public:
explicit EltwiseLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_ELTWISE;
}
virtual inline int MinBottomBlobs() const { return 2; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
EltwiseParameter_EltwiseOp op_;
vector<Dtype> coeffs_;
Blob<int> max_idx_;
bool stable_prod_grad_;
};
/**
* @brief Reshapes the input Blob into flat vectors.
*
* Note: because this layer does not change the input values -- merely the
* dimensions -- it can simply copy the input. The copy happens "virtually"
* (thus taking effectively 0 real time) by setting, in Forward, the data
* pointer of the top Blob to that of the bottom Blob (see Blob::ShareData),
* and in Backward, the diff pointer of the bottom Blob to that of the top Blob
* (see Blob::ShareDiff).
*/
template <typename Dtype>
class FlattenLayer : public Layer<Dtype> {
public:
explicit FlattenLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_FLATTEN;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
/**
* @param bottom input Blob vector (length 2+)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs
* @param top output Blob vector (length 1)
* -# @f$ (N \times CHW \times 1 \times 1) @f$
* the outputs -- i.e., the (virtually) copied, flattened inputs
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
/**
* @brief Computes the error gradient w.r.t. the concatenate inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length K), into which the top error
* gradient is (virtually) copied
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
int count_;
};
/**
* @brief Also known as a "fully-connected" layer, computes an inner product
* with a set of learned weights, and (optionally) adds biases.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class InnerProductLayer : public Layer<Dtype> {
public:
explicit InnerProductLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_INNER_PRODUCT;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
int M_;
int K_;
int N_;
bool bias_term_;
Blob<Dtype> bias_multiplier_;
};
/**
* @brief Normalizes the input to have 0-mean and/or unit (1) variance.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class MVNLayer : public Layer<Dtype> {
public:
explicit MVNLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_MVN;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
Blob<Dtype> mean_, variance_, temp_;
/// sum_multiplier is used to carry out sum using BLAS
Blob<Dtype> sum_multiplier_;
};
/**
* @brief Ignores bottom blobs while producing no top blobs. (This is useful
* to suppress outputs during testing.)
*/
template <typename Dtype>
class SilenceLayer : public Layer<Dtype> {
public:
explicit SilenceLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_SILENCE;
}
virtual inline int MinBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 0; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {}
// We can't define Forward_gpu here, since STUB_GPU will provide
// its own definition for CPU_ONLY mode.
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
};
/**
* @brief Computes the softmax function.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class SoftmaxLayer : public Layer<Dtype> {
public:
explicit SoftmaxLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_SOFTMAX;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
/// sum_multiplier is used to carry out sum using BLAS
Blob<Dtype> sum_multiplier_;
/// scale is an intermediate Blob to hold temporary results.
Blob<Dtype> scale_;
};
#ifdef USE_CUDNN
/**
* @brief cuDNN implementation of SoftmaxLayer.
* Fallback to SoftmaxLayer for CPU mode.
*/
template <typename Dtype>
class CuDNNSoftmaxLayer : public SoftmaxLayer<Dtype> {
public:
explicit CuDNNSoftmaxLayer(const LayerParameter& param)
: SoftmaxLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual ~CuDNNSoftmaxLayer();
protected:
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
cudnnHandle_t handle_;
cudnnTensor4dDescriptor_t bottom_desc_;
cudnnTensor4dDescriptor_t top_desc_;
};
#endif
/**
* @brief Creates a "split" path in the network by copying the bottom Blob
* into multiple top Blob%s to be used by multiple consuming layers.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class SplitLayer : public Layer<Dtype> {
public:
explicit SplitLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_SPLIT;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int MinTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
int count_;
};
/**
* @brief Takes a Blob and slices it along either the num or channel dimension,
* outputting multiple sliced Blob results.
*
* TODO(dox): thorough documentation for Forward, Backward, and proto params.
*/
template <typename Dtype>
class SliceLayer : public Layer<Dtype> {
public:
explicit SliceLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_SLICE;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int MinTopBlobs() const { return 2; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
Blob<Dtype> col_bob_;
int count_;
int num_;
int channels_;
int height_;
int width_;
int slice_dim_;
vector<int> slice_point_;
};
} // namespace caffe
#endif // CAFFE_COMMON_LAYERS_HPP_