-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
401 lines (356 loc) · 18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import torch, os
import torch.nn as nn
from tqdm import tqdm
import numpy as np
import sys
from torch.optim import SGD
import wandb, json
import argparse
import cv2
from models.feature_predictor import FeaturePredictor
from collections import OrderedDict
import random
import gin
from absl import app, flags
from dataset.Loader import build_trainloader, build_testloader
from utils import gpu_utils, gs_utils, loss_utils
from utils.optimizers import build_optimizer, build_scheduler
from utils.metrics import MetricComputer
from utils.log_utils import ProcessSafeLogger
from utils.metrics import psnr
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
flags.DEFINE_string('output_dir', 'output', 'Output directory')
flags.DEFINE_string('eval_subdir', 'eval_final', 'Eval subdirectory')
flags.DEFINE_string('wandb_dir', '/cluster/scratch/chenyut/wandb', 'Wandbs Output directory')
flags.DEFINE_boolean('only_eval', False, 'eval or train')
flags.DEFINE_boolean('compare_with_input', False, 'Compare with input') #for evaluation
flags.DEFINE_multi_string(
'gin_file', None, 'List of paths to the config files.')
flags.DEFINE_multi_string(
'gin_param', '', 'Newline separated list of Gin parameter bindings.')
FLAGS = flags.FLAGS
@gin.configurable
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def make_grid(imgs, nrow=3, ncols=3):
img_h, img_w = imgs[0].shape[:2]
if imgs[0].ndim == 3:
grid = np.zeros((img_h*nrow, img_w*ncols, 3), dtype=np.uint8)
elif imgs[0].ndim == 2:
grid = np.zeros((img_h*nrow, img_w*ncols), dtype=np.uint8)
for i in range(nrow):
for j in range(ncols):
if i*ncols+j >= len(imgs):
break
grid[i*img_h:(i+1)*img_h, j*img_w:(j+1)*img_w] = imgs[i*ncols+j]
return grid
@gin.configurable
def evaluation(model, test_loader, output_dir, output_gt, compare_with_pseudo,
compare_with_input=False,
save_as_single=False,
evaluate_input=False):
model.eval()
metric_computer = MetricComputer()
if compare_with_input:
metric_computer_input = MetricComputer()
os.makedirs(output_dir, exist_ok=True)
with torch.no_grad():
cnt = 0
num_images, num_scenes = 0, 0
pseudo_loss = {}
for test_batch in tqdm(test_loader): #A scene at a time
test_batch_gs = gpu_utils.move_to_device([data['gs_params'] for data in test_batch],model.device)
test_batch_cameras = gpu_utils.move_to_device([data['cameras'] for data in test_batch],model.device)
test_batch_images = gpu_utils.move_to_device([data['images'] for data in test_batch],model.device)
test_batch_idx = [data['scene_idx'] for data in test_batch]
test_batch_name = [data['scene_name'] for data in test_batch]
test_batch_imgname = [data['images_name'] for data in test_batch]
forward_kwargs = {'batch_normalized_gs': test_batch_gs, 'batch_scene_idx': test_batch_idx}
out_test_batch_gs = model(**forward_kwargs)
for iii, (out_gs, in_gs, cameras, gt_imgs, scene_idx) in enumerate(zip(out_test_batch_gs, test_batch_gs, test_batch_cameras, test_batch_images, test_batch_idx)):
if evaluate_input:
pred_imgs, _ = gs_utils.rasterize_gaussians_to_multiimgs(in_gs, cameras)
else:
pred_imgs, _ = gs_utils.rasterize_gaussians_to_multiimgs(out_gs, cameras) # List of torch.tensor([H,W,3])
pred_imgs = torch.stack(pred_imgs, dim=0) #torch.tensor([N,H,W,3])
gt_imgs = torch.stack(gt_imgs, dim=0) #torch.tensor([N,H,W,3])
if gt_imgs.shape[-1] == 4:
# only for real images
masks = gt_imgs[...,3].unsqueeze(-1)
pred_imgs = pred_imgs*masks
gt_imgs = (gt_imgs[...,:3]*255).to(torch.uint8)
pred_imgs = (pred_imgs*255).to(torch.uint8)
else:
masks = None
gt_imgs = (gt_imgs*255).to(torch.uint8)
pred_imgs = (pred_imgs*255).to(torch.uint8)
imgs = [im.cpu().numpy().astype(np.uint8) for im in pred_imgs]
grid = make_grid(imgs)
grid = cv2.cvtColor(grid, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(output_dir, f'scene{scene_idx}_pred.png'), grid)
if output_gt:
gt_imgs_ = [im.cpu().numpy().astype(np.uint8) for im in gt_imgs]
grid = make_grid(gt_imgs_)
grid = cv2.cvtColor(grid, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(output_dir, f'scene{scene_idx}_gt.png'), grid)
metric_computer.update(pred_imgs, gt_imgs, name=f'{scene_idx}')
if compare_with_input:
input_imgs, _ = gs_utils.rasterize_gaussians_to_multiimgs(in_gs, cameras)
input_imgs = torch.stack(input_imgs, dim=0)
if masks is not None:
input_imgs = input_imgs*masks
input_imgs = (input_imgs*255).to(torch.uint8)
else:
input_imgs = (input_imgs*255).to(torch.uint8)
metric_computer_input.update(input_imgs, gt_imgs, name=f'{scene_idx}')
output_dir_thisscene = os.path.join(output_dir, f'compare/{test_batch_name[iii]}')
os.makedirs(output_dir_thisscene, exist_ok=True)
#save ([gt, input, pred])
for ii, (gt_img, input_img, pred_img) in enumerate(zip(gt_imgs, input_imgs, pred_imgs)):
gt_img = gt_img.cpu().numpy().astype(np.uint8)
input_img = input_img.cpu().numpy().astype(np.uint8)
pred_img = pred_img.cpu().numpy().astype(np.uint8)
cmp_img = np.concatenate([gt_img, input_img, pred_img], axis=1) #H,W*3
cv2.imwrite(os.path.join(output_dir_thisscene, f'{ii:02d}.png'), cmp_img[:,:,::-1])
if save_as_single:
output_dir_thisscene_single = os.path.join(output_dir, f'pred/{test_batch_name[iii]}')
os.makedirs(output_dir_thisscene_single, exist_ok=True)
for ii,pred_img in enumerate(pred_imgs):
pred_img = pred_img.cpu().numpy().astype(np.uint8)
cv2.imwrite(os.path.join(output_dir_thisscene_single, test_batch_imgname[iii][ii]), pred_img[:,:,::-1])
cnt += 1
num_images += len(pred_imgs)
metrics = metric_computer.sum() # We need to sum the metrics
metric_computer.write_to_file(os.path.join(output_dir, f'metrics.rank{dist.get_rank()}.json'))
if compare_with_input:
metric_computer_input.write_to_file(os.path.join(output_dir, f'metrics_input.rank{dist.get_rank()}.json'))
model.train()
num_images = torch.tensor([num_images]).to(model.device)
num_scenes = torch.tensor([num_scenes]).to(model.device)
torch.distributed.reduce(num_images, dst=0) #Sum
torch.distributed.reduce(num_scenes, dst=0) #Sum
for key in metrics:
torch.distributed.reduce(metrics[key], dst=0) #Sum
if dist.get_rank() == 0:
metrics[key] = (metrics[key]/num_images).item()
if compare_with_pseudo:
for key in pseudo_loss:
torch.distributed.reduce(pseudo_loss[key], dst=0)
if dist.get_rank() == 0:
metrics[f'pseudo_loss_{key}'] = (pseudo_loss[key]/num_scenes).item()
if compare_with_input:
metrics_input = metric_computer_input.sum()
for key in metrics_input:
torch.distributed.reduce(metrics_input[key], dst=0)
if dist.get_rank() == 0:
metrics_input[key] = (metrics_input[key]/num_images).item()
else:
metrics_input = {}
return metrics, metrics_input
@gin.configurable
def training(
model, optimizer_, scheduler_, train_loader,
output_dir,
total_steps: gin.REQUIRED,
pretrain_steps: gin.REQUIRED,
eval_interval: gin.REQUIRED,
log_interval: gin.REQUIRED,
save_interval: gin.REQUIRED,
log_image_interval: gin.REQUIRED,
grad_clip_norm: gin.REQUIRED,
image_l1_loss_weight=1.0,
lpips_loss_weight=0.0,
resume_from_step=0,
enable_amp=False,
empty_cache_fre=-1
):
if dist.get_rank() == 0:
logger = ProcessSafeLogger(os.path.join(output_dir, 'train.log')).get_logger()
if enable_amp:
scaler = torch.cuda.amp.GradScaler()
torch.autograd.set_detect_anomaly(False)
else:
torch.autograd.set_detect_anomaly(False)
if lpips_loss_weight > 0:
lpips_loss_func = loss_utils.lpips_loss_fn()
train_iterator = iter(train_loader)
accumulate_step = gin.query_parameter('build_trainloader.accumulate_step')
if dist.get_rank() == 0:
logger.info(f'Accumulate step: {accumulate_step}')
for step in tqdm(range(resume_from_step*accumulate_step, total_steps*accumulate_step), disable=dist.get_rank()!=0):
step_consider_accum = step//accumulate_step
try:
batch = next(train_iterator)
except StopIteration:
batch = next(train_iterator)
batch_gs = gpu_utils.move_to_device([data['gs_params'] for data in batch],model.device)
batch_cameras = gpu_utils.move_to_device([data['cameras'] for data in batch],model.device)
batch_images = gpu_utils.move_to_device([data['images'] for data in batch],model.device)
batch_scene_idx = [data['scene_idx'] for data in batch]
forward_kwargs = {'batch_normalized_gs': batch_gs, 'batch_scene_idx': batch_scene_idx}
with torch.cuda.amp.autocast(enabled=enable_amp):
out_batch_gs = model(**forward_kwargs)
loss_dict = {}
metric_dict = {}
if step_consider_accum < pretrain_steps:
loss = 0
for ii, (out_gs, in_gs) in enumerate(zip(out_batch_gs, batch_gs)):
with torch.no_grad():
pseudo_target = gs_utils.create_pseudo_target(
sh_degree=model.module.sh_degree,
N=in_gs['means'].shape[0],
input_gs=in_gs,)
for key in pseudo_target:
target = pseudo_target[key].to(model.device)
pred = out_gs[key]
value = (pred - target).abs().mean()
if key == 'features_rest':
if model.module.sh_degree>0:
loss += value
else:
loss += value
metric_dict['pretrain/'+key] = value
loss = loss/len(out_batch_gs)
loss_dict['pretrain_loss'] = loss/len(out_batch_gs)
optimizer, scheduler = optimizer_['pretrain'], scheduler_['pretrain']
else:
loss_dict['image_l1'], metric_dict['train_psnr'] = 0, 0
if lpips_loss_weight > 0:
loss_dict['lpips'] = 0
num_images = 0
for out_gs, cameras, images, in_gs in zip(out_batch_gs, batch_cameras, batch_images, batch_gs):
pred_imgs, _ = gs_utils.rasterize_gaussians_to_multiimgs(out_gs, cameras) #a List
for pred_img, gt_img in zip(pred_imgs, images):
loss_dict['image_l1'] += (pred_img - gt_img).abs().mean()#/len(pred_imgs)
if lpips_loss_weight > 0:
loss_dict['lpips'] += lpips_loss_func(pred_img.unsqueeze(0), gt_img.unsqueeze(0)).mean()
metric_dict['train_psnr'] += (psnr(pred_img.unsqueeze(0), gt_img.unsqueeze(0)).mean())#/len(pred_imgs)
num_images += 1
loss_dict['image_l1'] = loss_dict['image_l1']/num_images/len(out_batch_gs)*image_l1_loss_weight
if lpips_loss_weight > 0:
loss_dict['lpips'] = loss_dict['lpips']/num_images/len(out_batch_gs)*lpips_loss_weight
metric_dict['train_psnr'] = metric_dict['train_psnr']/num_images/len(out_batch_gs)
optimizer, scheduler = optimizer_['train2D'], scheduler_['train2D']
total_loss = sum(loss_dict.values())/accumulate_step
if enable_amp:
scaler.scale(total_loss).backward()
else:
total_loss.backward()
if (step+1) % accumulate_step == 0:
if grad_clip_norm > 0:
if enable_amp:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip_norm)
if enable_amp:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if empty_cache_fre > 0 and (step+1) % empty_cache_fre == 0:
torch.cuda.empty_cache()
if (step_consider_accum % log_interval == 0) and step%accumulate_step==0:
for key, value in list(loss_dict.items()) + list(metric_dict.items()):
torch.distributed.reduce(value, dst=0)
if dist.get_rank() == 0:
value = (value/torch.cuda.device_count()).item()
wandb.log({key: value}, step=step_consider_accum)
if step_consider_accum % (log_interval*10)==0:
logger.info(f'Training-Step {step_consider_accum}: {key}: {value:.3f}')
wandb.log({'lr': optimizer.param_groups[0]['lr']}, step=step_consider_accum)
if step_consider_accum % log_image_interval == 0 and step%accumulate_step==0:
os.makedirs(os.path.join(output_dir, 'train'), exist_ok=True)
with torch.no_grad():
imgs, _ = gs_utils.rasterize_gaussians_to_multiimgs(
gpu_utils.move_to_device(out_batch_gs[0], device=model.device), batch_cameras[0])
imgs = [(im*255).cpu().numpy().astype(np.uint8) for im in imgs]
grid = make_grid(imgs)
grid = cv2.cvtColor(grid, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(output_dir, f'train/{step_consider_accum:08d}_pred-rank{dist.get_rank()}.png'), grid)
if ((step%accumulate_step==0) and ((step_consider_accum % eval_interval == 0) or (step_consider_accum+1)==pretrain_steps)):
model.eval()
for test_dataset, test_loader in build_testloader().items():
metrics, metrics_input = evaluation(model, test_loader = test_loader,
output_dir=output_dir+f'/eval/{test_dataset}/{step_consider_accum}', output_gt=(step_consider_accum==0), compare_with_pseudo=step_consider_accum<pretrain_steps,
evaluate_input=(step_consider_accum==0)) #when step==0, we evaluate the input
if dist.get_rank() == 0:
wandb.log({f'metrics_testscenes/{test_dataset}/{k}_testviews':v for k,v in metrics.items()}, step=step_consider_accum)
metric_str = ' '.join([f'{k}: {v:.4f}' for k,v in metrics.items()])
logger.info(f'Test {test_dataset} Step {step_consider_accum}: {metric_str}')
dist.barrier()
if (step%accumulate_step==0) and ((step_consider_accum+1) % save_interval == 0 or (step_consider_accum+1)==pretrain_steps):
if dist.get_rank()==0:
os.makedirs(os.path.join(output_dir, 'checkpoints'), exist_ok=True)
torch.save(model.module.state_dict(), os.path.join(output_dir, f'checkpoints/model_{step_consider_accum:08d}.pth'))
logger.info(f'Save model at step {step_consider_accum}')
dist.barrier()
model.train()
if step==resume_from_step and dist.get_rank() == 0:
with open(os.path.join(FLAGS.output_dir, 'config.gin'),'w') as f:
f.writelines(gin.operative_config_str())
return step
def main(argv):
dist.init_process_group("nccl")
rank = dist.get_rank()
torch.cuda.set_device(rank % torch.cuda.device_count())
print(f"Start running basic DDP example on rank {rank}.")
device_id = rank % torch.cuda.device_count()
gin.bind_parameter('training.output_dir', FLAGS.output_dir)
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
os.makedirs(FLAGS.output_dir, exist_ok=True)
set_seed()
# 1. Dataloading
train_loader = build_trainloader()
# 2. Build Model
model = FeaturePredictor()
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'Number of trainable parameters: {num_params}')
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
if model.resume_ckpt is not None:
model.load_state_dict(torch.load(model.resume_ckpt,map_location='cpu'))
print(f'Load model from {model.resume_ckpt}')
if FLAGS.only_eval:
assert model.resume_ckpt is not None, 'Need to specify the model checkpoint for evaluation'
model = model.to(device_id)
model = DDP(model, device_ids=[device_id])
if FLAGS.only_eval == False:
model.train()
# 3. Optimizer
optimizer, scheduler = {}, {}
with gin.config_scope('pretrain'):
optimizer['pretrain'] = build_optimizer(model.module)
scheduler['pretrain'] = build_scheduler(optimizer['pretrain'])
with gin.config_scope('train2D'):
optimizer['train2D'] = build_optimizer(model.module)
scheduler['train2D'] = build_scheduler(optimizer['train2D'])
if rank==0:
wandb_run = wandb.init(project='3dgs_multiple-scenes', dir=FLAGS.wandb_dir) #resume=?
if FLAGS.output_dir[-1]=='/':
FLAGS.output_dir = FLAGS.output_dir[:-1]
wandb.run.name = '/'.join(FLAGS.output_dir.split('/')[-2:])
final_step = training(model, optimizer, scheduler, train_loader, output_dir=FLAGS.output_dir)
model.eval()
for test_dataset, test_loader in build_testloader().items():
metrics, metrics_input = evaluation(model, test_loader = test_loader,
output_dir=FLAGS.output_dir+f'/{FLAGS.eval_subdir}/{test_dataset}',
compare_with_input=FLAGS.compare_with_input,
save_as_single=True,
output_gt=True, compare_with_pseudo=False)
if dist.get_rank() == 0:
logger = ProcessSafeLogger(os.path.join(FLAGS.output_dir, FLAGS.eval_subdir, 'eval.log')).get_logger()
metric_str = ' '.join([f'{k}: {v:.4f}' for k,v in metrics.items()])
logger.info(f'Test-{test_dataset}: {metric_str}')
if FLAGS.compare_with_input:
metric_str = ' '.join([f'{k}: {v:.4f}' for k,v in metrics_input.items()])
logger.info(f'Input 3DGS: Test-{test_dataset}: {metric_str}')
dist.barrier()
dist.destroy_process_group()
app.run(main)