Skip to content

Latest commit

 

History

History
109 lines (85 loc) · 4.55 KB

README.md

File metadata and controls

109 lines (85 loc) · 4.55 KB

Performance Record

Conformer Result

decoding mode CER
attention decoder 5.18
ctc greedy search 4.94
ctc prefix beam search 4.94
attention rescoring 4.61
LM + attention rescoring 4.36

Unified Conformer Result

decoding mode/chunk size full 16 8 4
attention decoder 5.40 5.60 5.74 5.86
ctc greedy search 5.56 6.29 6.68 7.10
ctc prefix beam search 5.57 6.30 6.67 7.10
attention rescoring 5.05 5.45 5.69 5.91
LM + attention rescoring 4.73 5.08 5.22 5.38

Transformer Result

decoding mode CER
attention decoder 5.69
ctc greedy search 5.92
ctc prefix beam search 5.91
attention rescoring 5.30
LM + attention rescoring 5.04

Unified Transformer Result

decoding mode/chunk size full 16 8 4
attention decoder 6.04 6.35 6.45 6.70
ctc greedy search 6.28 6.99 7.39 7.89
ctc prefix beam search 6.28 6.98 7.40 7.89
attention rescoring 5.52 6.05 6.28 6.62
LM + attention rescoring 5.11 5.59 5.86 6.17

AMP Training Transformer Result

  • Feature info: using fbank feature, dither, cmvn, online speed perturb
  • Training info: lr 0.002, batch size, 4 gpus, acc_grad 4, 240 epochs, dither 0.1, warm up steps 25000
  • Decoding info: ctc_weight 0.5, average_num 20
  • Git hash: 1bb4e5a269c535340fae5b0739482fa47733d2c1
decoding mode CER
attention decoder 5.73
ctc greedy search 5.92
ctc prefix beam search 5.92
attention rescoring 5.31

Muilti-machines Training Conformer Result

  • Feature info: using fbank feature, dither, cmvn, online speed perturb
  • Training info: lr 0.004, batch size 16, 2 machines, 8*2=16 gpus, acc_grad 4, 240 epochs, dither 0.1, warm up steps 10000
  • Decoding info: ctc_weight 0.5, average_num 20
  • Git hash: f6b1409023440da1998d31abbcc3826dd40aaf35
decoding mode CER
attention decoder 4.90
ctc greedy search 5.07
ctc prefix beam search 5.06
attention rescoring 4.65

Conformer with/without Position Encoding Result

  • Feature info: using fbank feature, dither, cmvn, online speed perturb
  • Training info: lr 0.002, batch size 16, 8 gpu, acc_grad 4, 240 epochs, dither 0.1
  • Decoding info: ctc_weight 0.5, average_num 20
decoding mode with PE without PE
attention decoder 5.18 5.73
ctc greedy search 4.94 4.97
ctc prefix beam search 4.94 4.97
attention rescoring 4.61 4.69