-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
669 lines (663 loc) · 26.3 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
#include <atomic>
#include <barrier>
#include <chrono>
#include <cstdint>
#include <cstdio>
#include <limits>
#include <sys/mman.h>
#include <thread>
#include <vector>
#include <x86intrin.h>
#if 0
// pretend it's icelake
__m512i mm512_permutexvar_epi8(__m512i idx, __m512i a){
uint8_t idx2[64], a2[64];
_mm512_storeu_epi8((void*)idx2, idx);
_mm512_storeu_epi8((void*)a2, a);
for(int i = 0; i < 64; i++){
idx2[i] = a2[idx2[i] & 63];
}
return _mm512_loadu_epi8((void*)idx2);
}
__m512i mm512_permutex2var_epi8(__m512i a, __m512i idx, __m512i b){
uint8_t idx2[64], a2[128];
_mm512_storeu_epi8((void*)idx2, idx);
_mm512_storeu_epi8((void*)a2, a);
_mm512_storeu_epi8((void*)&a2[64], b);
for(int i = 0; i < 64; i++){
idx2[i] = a2[idx2[i] & 127];
}
return _mm512_loadu_epi8((void*)idx2);
}
__m512i mm512_gf2p8affine_epi64_epi8(__m512i x, __m512i A, int b){
uint8_t x2[64], a2[64];
_mm512_storeu_epi8((void*)x2, x);
_mm512_storeu_epi8((void*)a2, A);
for(size_t i = 0; i < 64; i++){
uint8_t acc = 0;
for(size_t j = 0; j < 8; j++){
if(_popcnt32(x2[i] & a2[(i & 56) + (j ^ 7)]) & 1){
acc |= 1 << j;
}
}
x2[i] = acc ^ b;
}
return _mm512_loadu_epi8((void*)x2);
}
// anyway
#else
#define mm512_permutexvar_epi8 _mm512_permutexvar_epi8
#define mm512_permutex2var_epi8 _mm512_permutex2var_epi8
#define mm512_gf2p8affine_epi64_epi8 _mm512_gf2p8affine_epi64_epi8
#endif
__m512i mm512_cvtsi64_si512(uint64_t a){
// extra vmovdqa on gcc
// return _mm512_inserti32x4(_mm512_setzero_epi32(), _mm_cvtsi64_si128(a), 0);
return _mm512_set_epi64(0, 0, 0, 0, 0, 0, 0, a);
}
__m256i mm256_cvtsi64_si256(uint64_t a){
return _mm256_set_epi64x(0, 0, 0, a);
}
__m128i mm_iota_epi8(){
uint8_t v[16];
for(int i = 0; i < 16; i++){
v[i] = i;
}
return _mm_loadu_epi8((void*)v);
}
__m512i mm512_iota_epi8(){
uint8_t v[64];
for(int i = 0; i < 64; i++){
v[i] = i;
}
return _mm512_loadu_epi8((void*)v);
}
__m512i mm512_iota_epi16(){
uint16_t v[32];
for(int i = 0; i < 32; i++){
v[i] = i;
}
return _mm512_loadu_epi16((void*)v);
}
__m512i mm512_iota_epi32(){
uint32_t v[16];
for(int i = 0; i < 16; i++){
v[i] = i;
}
return _mm512_loadu_epi32((void*)v);
}
void print(__m128i a){
uint8_t v[16];
_mm_storeu_si128((__m128i*)v, a);
for(int i = 0; i < 16; i++){
printf("%02x,", v[i]);
}
printf("\n");
}
__m128i x4a_decompress(uint16_t a){
// base
__m128i v = _mm_set1_epi8(a >> 5);
// offset
uint32_t offsets[8] = {0x00000000, 0x01000000, 0x01010000, 0x01000100, 0x00010100, 0x01010100, 0x02010100, 0x33221100};
v = _mm_add_epi8(v, _mm_cvtsi32_si128(offsets[(a >> 2) & 7]));
// refl
v = _mm_shuffle_epi8(v, _mm_xor_si128(mm_iota_epi8(), _mm_set1_epi8(a & 3)));
return v;
}
bool eq(__m128i a, __m128i b){
return _mm_cvtsi128_si32(a) == _mm_cvtsi128_si32(b);
}
uint16_t x4a_compress(__m128i a){
__m128i hmin = _mm_min_epu8(a, _mm_bsrli_si128(a, 2));
uint8_t base = _mm_cvtsi128_si32(_mm_min_epu8(hmin, _mm_bsrli_si128(hmin, 1)));
uint32_t diffs = _mm_cvtsi128_si32(_mm_sub_epi8(a, _mm_set1_epi8(base)));
uint32_t offsets[8] = {0x00000000, 0x01000000, 0x01010000, 0x01000100, 0x00010100, 0x01010100, 0x02010100, 0x33221100};
uint32_t offsets2[32];
for(int i = 0; i < 8; i++){
uint32_t x = offsets[i];
offsets2[i*4] = x;
offsets2[i*4+1] = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);
offsets2[i*4+2] = (x >> 16) | (x << 16);
offsets2[i*4+3] = _bswap(x);
}
for(int i = 0; i < 32; i++){
if(diffs == offsets2[i]){
return (base << 5) + i;
}
}
// sussy
return 255;
}
void print(__m512i a){
// uint16_t v[32];
// _mm512_storeu_epi16((void*)v, a);
// for(int i = 0; i < 32; i++){
// printf("%04x,", v[i]);
// }
// printf("\n");
uint8_t v[64];
_mm512_storeu_epi8((void*)v, a);
for(int i = 0; i < 64; i++){
printf("%02x,", v[i]);
}
printf("\n");
}
void print2(__m512i a){
print(a);
}
void bake(__m512i a){
uint64_t a2[8];
_mm512_storeu_epi16((void*)a2, a);
printf("_mm512_setr_epi64(");
for(int i = 0; i < 8; i++){
printf("0x%016lx%s", a2[i], i < 7 ? ", " : ")\n");
}
}
uint64_t add_parity(uint64_t g){
if(!(g & (g - 1))){
return g << 1;
}
return (g << 1) | ((_mm_popcnt_u64(g) & 1) ^ 1);
}
enum code_type {
any,
self_orthogonal
};
template <code_type ty> class x4a_icx_zmm_block {
// move this later
public:
static __m512i permdec(__m512i a, uint16_t gen){
// printf("permdec input gen %04x a\n", gen);
// printzmm(a);
// a = _mm512_permutexvar_epi32(_mm512_xor_si512(mm512_iota_epi32(), _mm512_set1_epi32(gen >> 4)), a);
// // printf("1\n");
// // printzmm(a);
// a = _mm512_shuffle_epi8(a, _mm512_xor_si512(_mm512_and_si512(mm512_iota_epi8(), _mm512_set1_epi8(15)), _mm512_set1_epi8((gen >> 2) & 3)));
// 4 entries per byte
a = mm512_permutexvar_epi8(_mm512_xor_si512(mm512_iota_epi8(), _mm512_set1_epi8(gen >> 2)), a);
// printf("2\n");
// printzmm(a);
// words with base >0
__mmask64 big = _mm512_cmpge_epu8_mask(a, _mm512_set1_epi8(32));
// permute within words
a = _mm512_xor_si512(a, _mm512_set1_epi8(gen & 3));
// printf("3\n");
// printzmm(a);
// words with base 0 need to be decreased by 20 (offset 6->1, others->0)
__m512i a2 = _mm512_subs_epu8(a, _mm512_set1_epi8(20));
// printf("4\n");
// printzmm(a2);
// other words need to be decreased by 32
a2 = _mm512_mask_sub_epi8(a2, big, a, _mm512_set1_epi8(32));
// printf("permdec output\n");
// printzmm(a2);
return a2;
}
static __m512i gen_max_table(int block){
uint8_t table[64];
for(int i = 0; i < 64; i++){
int j = (block << 6) + i;
uint8_t lo = (j >> 3) & 28;
uint8_t hi = (j & 31) ^ lo;
if(hi < lo){
hi ^= 28;
lo ^= 28;
}
hi -= 4;
table[i] = x4a_compress(_mm_max_epu8(x4a_decompress(hi), x4a_decompress(lo)));
}
return _mm512_loadu_epi8((void*)table);
}
static __m512i lookup(__m512i a){
// on icelake this is just a vpermi2b
// outputs of gen_max_table()
__m512i table[2] = {
_mm512_setr_epi64(0x00000000fffefdfc, 0x0a0a080807060504, 0x101111100d0c0d0c, 0x1b1a191817161514, 0x312c281804040404, 0x110c080416160808, 0x150c150c14111114, 0x20161514271a1918),
_mm512_setr_epi64(0x2020080815140808, 0x2020201427262518, 0x2726191820201514, 0x1415151415141514, 0x1020201016161414, 0x1b26251817202014, 0x20162014271a2518, 0x200c200c14161614)
};
return mm512_permutex2var_epi8(table[0], a, table[1]);
}
static __m512i max(__m512i a, __m512i b){
__m512i hi = _mm512_max_epu8(a, b);
__m512i lo = _mm512_min_epu8(a, b);
__m512i lobase = _mm512_and_si512(lo, _mm512_set1_epi8(0xe0));
__m512i hibase = _mm512_and_si512(hi, _mm512_set1_epi8(0xe0));
__m512i diff = _mm512_sub_epi8(hi, lobase);
__mmask64 nkeeps = _mm512_cmplt_epu8_mask(diff, _mm512_set1_epi8(64));
__mmask64 neqs = _mm512_cmpge_epu8_mask(diff, _mm512_set1_epi8(32));
__m512i hi2 = _mm512_add_epi8(hi, _mm512_set1_epi8(0b00000100));
// could also be an and/subs
// __m512i decbase = _mm512_subs_epu8(_mm512_and_si512(mm512_iota_epi8(), _mm512_set1_epi8(31)), _mm512_set1_epi8(20));
// __m512i lo2 = _mm512_mask_permutexvar_epi8(lo, neqs, lo, decbase);
__m512i lo2 = _mm512_mask_subs_epu8(lo, neqs, _mm512_and_si512(lo, _mm512_set1_epi8(31)), _mm512_set1_epi8(20));
// copy offset to base, then xor bits of base with the top bit
__m512i lo3 = mm512_gf2p8affine_epi64_epi8(lo2, _mm512_set1_epi64(0x0102040810141800ull), 0);
// __m512i idxs = _mm512_xor_si512(hi2, lo2);
// // c?b:a
// idxs = _mm512_ternarylogic_epi32(idxs, _mm512_slli_epi16(lo2, 3), _mm512_set1_epi16(0x00e0), 0b11011000);
// c?a^b:a
__m512i idxs = _mm512_ternarylogic_epi32(lo3, hi2, _mm512_set1_epi8(0b11111), 0b01111000);
__m512i r = lookup(idxs);
// fix rolls
// c?a^b:a
r = _mm512_ternarylogic_epi32(r, lo2, _mm512_set1_epi8(0b11), 0b01111000);
// r = _mm512_add_epi16(r, hibase);
// r = _mm512_mask_blend_epi16(keeps, hi, r);
return _mm512_mask_add_epi8(hi, nkeeps, r, hibase);
}
static __m512i gen_zpos_table(){
uint8_t table[64] = {};
for(int i = 0; i < 32; i++){
uint8_t v[16];
_mm_storeu_epi8((void*)v, x4a_decompress(i));
table[i] = 128;
for(int j = 0; j < 16; j++){
if(v[j] == 0){
table[i] = j;
break;
}
}
}
return _mm512_loadu_epi16((void*)table);
}
static uint16_t zeropos_(__m512i a, std::vector<uint64_t> &gens, uint64_t block_pos){
// too lazy to do an elegant algorithm
switch(ty){
case any: {
// generate arbitrary code
// uint8_t v[64];
// _mm512_storeu_epi8((void*)v, a);
// for(int i = 0; i < 64; i++){
// uint8_t v2[16];
// _mm_storeu_epi8((void*)v2, x4a_decompress(v[i]));
// for(int j = 0; j < 4; j++){
// if(!v2[j]){
// return i * 4 + j;
// }
// }
// }
// return 256;
// elegant algorithm
__mmask64 haszero = _mm512_cmplt_epu8_mask(a, _mm512_set1_epi8(32));
if(haszero == (__mmask64)0){
return 256;
}
// output of gen_zpos_table
__m512i table = _mm512_setr_epi64(0x0100000000000000, 0x0100010002020000, 0x0302010000010100, 0x0302010003020100, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000);
__m512i positionsz = _mm512_mask_permutexvar_epi8(_mm512_set1_epi8(-1), haszero, a, table);
positionsz = _mm512_adds_epu8(positionsz, _mm512_slli_epi16(mm512_iota_epi8(), 2));
positionsz = _mm512_min_epu8(positionsz, _mm512_slli_epi16(positionsz, 8));
__m256i positionsy = _mm256_min_epu16(_mm512_extracti32x8_epi32(positionsz, 0), _mm512_extracti32x8_epi32(positionsz, 1));
__m128i positionsx = _mm_min_epu16(_mm256_extracti128_si256(positionsy, 0), _mm256_extracti128_si256(positionsy, 1));
// wonderful instruction
return (_mm_cvtsi128_si32(_mm_minpos_epu16(positionsx)) >> 8) & 255;
}
case self_orthogonal: {
// generate self-orthogonal code minus parity bit
uint8_t v[64];
_mm512_storeu_epi8((void*)v, a);
for(int i = 0; i < 64; i++){
uint8_t v2[16];
_mm_storeu_epi8((void*)v2, x4a_decompress(v[i]));
for(int j = 0; j < 4; j++){
if(!v2[j]){
int ret = i * 4 + j;
bool valid = true;
for(size_t k = 0; k < gens.size(); k++){
if((gens[k] & (gens[k] - 1)) != 0 && (_mm_popcnt_u64(add_parity(gens[k]) & add_parity(block_pos + ret)) & 1)){
valid = false;
break;
}
}
if(valid){
return ret;
}
}
}
}
return 256;
}
}
}
__m512i data;
x4a_icx_zmm_block(__m512i _data){
data = _data;
}
static constexpr uint32_t entries_per_block_bits = 8;
static x4a_icx_zmm_block base(uint32_t dist){
return x4a_icx_zmm_block(mm512_cvtsi64_si512(((dist - 3) << 5) | 27));
}
static std::vector<uint64_t> base_gens(uint32_t dist){
std::vector<uint64_t> v = {1, 2, 4};
// first 4 entries are 2,1,1,0 in this case
if(dist == 3){
v[2] = 3;
}
return v;
}
x4a_icx_zmm_block combine(x4a_icx_zmm_block other, uint64_t gen){
__m512i a = data;
__m512i b = other.data;
b = permdec(b, gen);
return x4a_icx_zmm_block(max(a, b));
}
bool haszero(std::vector<uint64_t> &gens, uint64_t block_pos){
if(_mm512_cmplt_epu8_mask(data, _mm512_set1_epi8(32)) == (__mmask64)0){
return false;
}
if(ty == any){
return true;
}
return zeropos_(data, gens, block_pos) < 256;
}
uint64_t zeropos(std::vector<uint64_t> &gens, uint64_t block_pos){
return zeropos_(data, gens, block_pos);
}
void print(){
uint8_t v[64];
_mm512_storeu_si512((void*)v, data);
for(int i = 0; i < 64; i++){
printf("%08x,", _mm_cvtsi128_si32(x4a_decompress(v[i])));
}
printf("\n");
for(int i = 0; i < 64; i++){
printf("%02x,", v[i]);
}
printf("\n");
}
};
template<typename block> block first_block(uint32_t dist, std::vector<uint64_t> &gens){
block b = block::base(dist);
// b.print();
gens = block::base_gens(dist);
uint64_t gen = gens.back();
while(gen < (1 << block::entries_per_block_bits)){
b = b.combine(b, gen);
// printf("gen %04lx\n", gen);
// b.print();
uint64_t last_gen = gen;
if(b.haszero(gens, 0)){
gen = b.zeropos(gens, 0);
}else{
gen = (1 << block::entries_per_block_bits);
}
gens.push_back(gen);
if(last_gen >= gen){
printf("sussy 1 %02lx %02lx\n", last_gen, gen);
return b;
}
}
return b;
}
template<typename block> uint64_t slice(uint32_t dist, uint64_t gen, uint64_t slice_blocks, block* lows, uint64_t low_base, block* highs, uint64_t high_base, std::vector<uint64_t> &gens){
uint64_t offset = gen ^ low_base ^ high_base;
uint64_t block_offset = offset >> block::entries_per_block_bits;
if(block_offset >= slice_blocks){
printf("sussy 3: %d %08lx %08lx %08lx %08lx %08lx\n", dist, gen, slice_blocks, low_base, high_base, block_offset);
}
bool needzero = (high_base + (slice_blocks << block::entries_per_block_bits)) > gen;
// bool needzero = true;
uint64_t next_gen = std::numeric_limits<uint64_t>::max();
for(size_t i = 0; i < slice_blocks; i++){
block lo = lows[i ^ block_offset];
block hi = highs[i];
// printf("i %d gen %08x\n", i, gen);
// lo.print();
// hi.print();
lo = lo.combine(hi, offset);
hi = hi.combine(lo, offset);
// lo.print();
// hi.print();
lows[i ^ block_offset] = lo;
highs[i] = hi;
// lo.store(&lows[i ^ block_offset]);
// hi.store(&highs[i]);
// printf("haszero %08x %d\n", high_base + (i << block::entries_per_block_bits), hi.haszero());
uint64_t block_pos = high_base + (i << block::entries_per_block_bits);
// idk
// if(high_base == gen && i == block_offset && next_gen == std::numeric_limits<uint64_t>::max()){
// needzero = true;
// }
if(needzero && hi.haszero(gens, block_pos)){
// printf("zeropos %08x %08x %08x %08x\n", high_base, (i << block::entries_per_block_bits), hi.zeropos(), high_base + (i << block::entries_per_block_bits) + hi.zeropos());
next_gen = block_pos + hi.zeropos(gens, block_pos);
needzero = false;
}
}
return next_gen;
}
template<typename block> std::vector<uint64_t> findcode2(uint32_t dist, uint32_t codim, uint64_t max_blocks_per_slice, uint64_t max_threads, bool print_gens, bool evenize, bool print_times){
std::vector<uint64_t> gens;
block t = first_block<block>(dist, gens);
auto print_gen = [print_gens, evenize](size_t i, uint64_t gen){
if(print_gens){
printf("i %05zu v %016lx\n", i, evenize ? add_parity(gen) : gen);
fflush(stdout);
}
};
if(print_gens){
for(size_t i = 0; i < gens.size(); i++){
// printf("i %05zu v %016lx\n", i, gens[i]);
// fflush(stdout);
print_gen(i, gens[i]);
}
}
// todo: remove some gens if codim<epbb
if(block::entries_per_block_bits >= codim){
return gens;
}
// printf("a-3\n");
// todo: deal with weird page sizes
size_t areasize = sizeof(block) << (codim - block::entries_per_block_bits);
size_t pagesize = 1 << 12;
areasize = (areasize + (pagesize - 1)) & ~pagesize;
block* area = (block*)mmap(0, areasize, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_POPULATE, -1, 0);
// printf("a-3+1-1\n");
area[0] = t;
uint64_t gen = (1 << block::entries_per_block_bits), last_gen = 0;
const uint64_t entries_per_thread = max_blocks_per_slice << block::entries_per_block_bits;
const uint64_t max_st_entries = std::min((uint64_t)(1ull << codim), entries_per_thread);
std::chrono::time_point<std::chrono::steady_clock> start = std::chrono::steady_clock::now(), end;
while(gen < max_st_entries){
uint64_t high_base = (1ull << 63) >> _lzcnt_u64(gen);
uint64_t high_base_blocks = high_base >> block::entries_per_block_bits;
uint64_t last_gen = gen;
// printf("a-3+1\n");
last_gen = gen;
gen = std::min(slice<block>(dist, gen, high_base_blocks, area, 0, &area[high_base_blocks], high_base, gens), high_base << 1);
// printf("a-3+2\n");
gens.push_back(gen);
print_gen(gens.size() - 1, gen);
// if(print_gens){
// printf("i %05lu v %016lx\n", gens.size() - 1, gen);
// fflush(stdout);
// }
if(last_gen >= gen){
printf("sussy 2 %08lx %08lx\n", last_gen, gen);
return gens;
}
if(print_times){
if((last_gen & (last_gen - 1)) == 0){
end = std::chrono::steady_clock::now();
uint64_t check_bits = 64 - _lzcnt_u64(last_gen);
printf("%2.3f ms per gen for %lu check bits\n", ((double)std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count()) / 1000000, check_bits);
}
if((gen & (gen - 1)) == 0){
start = std::chrono::steady_clock::now();
}
}
}
if(print_times){
printf("Starting multi-threaded phase\n");
}
std::atomic_uint64_t next_slice = {0};
std::atomic_uint64_t next_gen = {(1ull << 63) >> (_lzcnt_u64(gen) - 1)};
bool first_update = true;
// log2 of next power of 2 after max_threads
uint64_t max_threads_bits = (64 - _lzcnt_u64(max_threads - 1));
uint64_t even_blocks_per_slice = (1ull << 63) >> (_lzcnt_u64(gen) + block::entries_per_block_bits + max_threads_bits);
uint64_t blocks_per_slice = std::min(max_blocks_per_slice, even_blocks_per_slice);
// uint64_t blocks_per_slice = even_blocks_per_slice;
// uint64_t blocks_per_slice = max_blocks_per_slice;
auto update_gen = [&start, &end, &last_gen, &gen, &gens, &next_slice, &next_gen, &print_gen, print_times, &first_update, &blocks_per_slice, max_threads_bits, max_blocks_per_slice](){
if(first_update){
first_update = false;
start = std::chrono::steady_clock::now();
return;
}
last_gen = gen;
gen = next_gen.load(std::memory_order_relaxed);
// todo: figure out why this reports 0ms when there are no generators at a check bit
if(print_times){
if((last_gen & (last_gen - 1)) == 0){
end = std::chrono::steady_clock::now();
uint64_t check_bits = 64 - _lzcnt_u64(last_gen);
printf("%2.3f ms per gen for %lu check bits\n", ((double)std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count()) / 1000000, check_bits);
}
if((gen & (gen - 1)) == 0){
start = std::chrono::steady_clock::now();
}
}
gens.push_back(gen);
// if(print_gens){
// printf("i %05lu v %016lx\n", gens.size() - 1, gen);
// fflush(stdout);
// // doesn't work
// // if(gen < (1 << (gens.size() >> 1))){
// // // self-dual code, so everything else is boring
// // gen = (1ull << 62);
// // }
// }
print_gen(gens.size() - 1, gen);
uint64_t even_blocks_per_slice = (1ull << 63) >> (_lzcnt_u64(gen) + block::entries_per_block_bits + max_threads_bits);
blocks_per_slice = std::min(max_blocks_per_slice, even_blocks_per_slice);
// blocks_per_slice = even_blocks_per_slice;
next_gen.store((1ull << 63) >> (_lzcnt_u64(gen) - 1), std::memory_order_relaxed);
next_slice.store(0, std::memory_order_relaxed);
};
std::barrier<decltype(update_gen)> sync_point(max_threads, update_gen);
auto work = [dist, codim, &gen, &sync_point, area, &blocks_per_slice, &next_slice, &next_gen, &gens](){
sync_point.arrive_and_wait();
while(gen < (1ull << codim)){
uint64_t local_gen = gen;
uint64_t high_base_entry = (1ull << 63) >> _lzcnt_u64(local_gen);
uint64_t high_base_block = high_base_entry >> block::entries_per_block_bits;
uint64_t slices = 0;
uint64_t local_next_gen = std::numeric_limits<uint64_t>::max();
for(;;){
uint64_t this_slice = next_slice.fetch_add(1, std::memory_order_relaxed);
uint64_t slice_first_block = this_slice * blocks_per_slice;
uint64_t slice_first_entry = slice_first_block >> block::entries_per_block_bits;
if(slice_first_block >= high_base_block){
break;
}
uint64_t high_block_index = high_base_block + slice_first_block;
uint64_t low_block_index = ((local_gen >> block::entries_per_block_bits) ^ high_block_index) & (-blocks_per_slice);
local_next_gen = std::min(local_next_gen, slice<block>(dist, local_gen, blocks_per_slice, &area[low_block_index], low_block_index << block::entries_per_block_bits, &area[high_block_index], high_block_index << block::entries_per_block_bits, gens));
slices++;
}
// atomic_min plz
uint64_t cur_next_gen = next_gen.load(std::memory_order_relaxed);
while(cur_next_gen > local_next_gen){
next_gen.compare_exchange_weak(cur_next_gen, local_next_gen, std::memory_order_relaxed, std::memory_order_relaxed);
}
sync_point.arrive_and_wait();
}
};
std::thread threads[max_threads];
start = std::chrono::steady_clock::now();
for(uint32_t i = 0; i < max_threads; i++){
threads[i] = std::thread(work);
}
for(uint32_t i = 0; i < max_threads; i++){
threads[i].join();
}
munmap((void*)area, areasize);
return gens;
}
int main(int argc, char** argv){
// x4a_decompress(0x38);
// for(int i = 0; i < 256; i++){
// if(!eq(x4a_decompress(i), x4a_decompress(x4a_compress(x4a_decompress(i))))){
// printf("%x %x\n", i, x4a_compress(x4a_decompress(i)));
// print(x4a_decompress(i));
// print(x4a_decompress(x4a_compress(x4a_decompress(i))));
// return 1;
// }
// }
// printf("hi\n");
// std::vector<uint64_t> gens = findcode2<x4a_skx_zmm_block>(5, 25);
if(argc < 4){
fprintf(stderr, "Usage: %s distance code_type codimension\n", argc ? argv[0] : "[this_program]");
return 1;
}
uint32_t distance, codim;
code_type ty;
bool evenize = false;
int err = sscanf(argv[1], "%u", &distance);
if(err != 1 || (distance < 3) || (distance > 10)){
fprintf(stderr, "Invalid distance\n");
return 1;
}
switch(argv[2][0]){
// any
case 'a':
ty = any;
break;
// self-orthogonal
case 's':
ty = self_orthogonal;
break;
default:
fprintf(stderr, "Invalid code type\n");
return 1;
}
err = sscanf(argv[3], "%u", &codim);
if(err != 1){
fprintf(stderr, "Invalid codimension\n");
return 1;
}
// mock turtle theorem
if((distance & 1) == 0){
distance -= 1;
codim -= 1;
evenize = true;
}
const bool print_gens = false;
const bool print_times = true;
std::chrono::time_point<std::chrono::steady_clock> start, end;
// uint64_t thread_counts[] = {192};
uint64_t thread_counts[] = {std::thread::hardware_concurrency()};
for(int i = codim; i < codim + 1; i++){
for(int j = 0; j < 1; j++){
printf("%lu threads:\n", thread_counts[j]);
for(int k = 12; k < 13; k++){
printf("%u blocks per slice\n", 1 << k);
start = std::chrono::steady_clock::now();
std::vector<uint64_t> gens;
switch(ty){
case any:
gens = findcode2<x4a_icx_zmm_block<any> >(distance, i, 1 << k, thread_counts[j], print_gens, evenize, print_times);
break;
case self_orthogonal:
gens = findcode2<x4a_icx_zmm_block<self_orthogonal> >(distance, i, 1 << k, thread_counts[j], print_gens, evenize, print_times);
break;
}
end = std::chrono::steady_clock::now();
printf("Generators for codim %u: %zu\n", i, gens.size());
printf("%2.3f ms\n", ((double)std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()) / (1000));
}
}
}
// d5.txt skips the first gen
// for(int i = 1; i < gens.size(); i++){
// printf("i %05zu v %016lx\n", i, gens[i]);
// }
// bake(x4a_icx_zmm_block::gen_max_table(0));
// bake(x4a_icx_zmm_block::gen_max_table(1));
// bake(x4a_icx_zmm_block<any>::gen_zpos_table());
// __m512i x = mm512_iota_epi8();
// __m512i y = _mm512_set1_epi64(0x8040201008040201);
// __m512i z = mm512_gf2p8affine_epi64_epi8(x, y, 0);
// print(z);
}