forked from MiguelTaibo/MOOEasyTool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMOObenchmark.py
70 lines (51 loc) · 2.49 KB
/
MOObenchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
from benchmarkFunctions.ackley import ackley
from benchmarkFunctions.crossit import crossitNdim
from benchmarkFunctions.gramacy import gramacy
from benchmarkFunctions.NNHeart import fit_nn_heart_precision, fit_nn_heart_recall, fit_nn_heart, fit_logreg_heart
from benchmarkFunctions.NNHeartNeurons import fit_nn_heart_neurons
from benchmarkFunctions.NNHeartNeuronsF1 import fit_nn_heart_neurons_f1
from benchmarkFunctions.NNHeartNeuronsProb import fit_nn_heart_neurons_prob
from benchmarkFunctions.NNHeartNeuronsProbF1 import fit_nn_heart_neurons_prob_f1
from benchmarkFunctions.NNhouses_regression import fit_nn_houses_regression
from benchmarkFunctions.NNhouses_regression_prob import fit_nn_houses_regression_prob
from benchmarkFunctions.NNhouses_regression_mixed import fit_nn_houses_regression_mixed
from benchmarkFunctions.NNhouses_regression_mixed_prob import fit_nn_houses_regression_mixed_prob
def MOOquadratic(xx, c1=-0.5, c2=0.5):
return np.array([np.sum((xx-c1)**2),np.sum((xx-c2)**2)])
def MOOackley(xx, c1=0.5, c2=-0.5, a=20, b=0.2, c=2*np.pi):
return np.array([ackley(np.array([xx-c1])),ackley(np.array([xx-c2]))])
def MOOexponential_ackley(xx, c1=-0.5, c2=0.5):
return np.array([1-np.exp(-np.sum((xx-c1)**2)), ackley(np.array([xx-c2]))])
def MOOquadratic_ackley(xx, c1=-0.5, c2=0.5):
return np.array([np.sum((xx-c1)**2),ackley(np.array([xx-c2]))])
def MOOexponential(xx, c1=-0.5, c2=0.5):
return np.array([1-np.exp(-np.sum((xx-c1)**2)), 1-np.exp(-np.sum((xx-c2)**2))])
def MOOcrossit(xx, c1=0.5, c2=-0.5):
return np.array([crossitNdim(xx-c1), crossitNdim(xx-c2)])
def MOOgramacy(x, c1=0.5, c2=-0.5):
return np.array([gramacy(x-c1), gramacy(x-c2)])
def MOOnnHeart_precision(C):
return fit_nn_heart_precision(C)
def MOOnnHeart_recall(C):
return fit_nn_heart_recall(C)
def MOOnnHeart(C):
return fit_nn_heart(C)
def MOOnnHeartNeurons(C):
return fit_nn_heart_neurons(C)
def MOOnnHeartNeuronsF1(C):
return fit_nn_heart_neurons_f1(C)
def MOOnnHeartNeuronsProb(C):
return fit_nn_heart_neurons_prob(C)
def MOOnnHeartNeuronsProbF1(C):
return fit_nn_heart_neurons_prob_f1(C)
def MOOnnHeartLogReg(C):
return fit_logreg_heart(C)
def MOOnnHousesRegression(C):
return fit_nn_houses_regression(C)
def MOOnnHousesRegressionProb(C):
return fit_nn_houses_regression_prob(C)
def MOOnnHousesRegressionMixed(C):
return fit_nn_houses_regression_mixed(C)
def MOOnnHousesRegressionMixedProb(C):
return fit_nn_houses_regression_mixed_prob(C)