diff --git a/2017/09-clustering/cl_francisco_carlos.ipynb b/2017/09-clustering/cl_francisco_carlos.ipynb new file mode 100644 index 0000000..0afb269 --- /dev/null +++ b/2017/09-clustering/cl_francisco_carlos.ipynb @@ -0,0 +1,461 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exercícios\n", + "\n", + "1 - Aplique os algoritmos K-means [1] e AgglomerativeClustering [2] em qualquer dataset que você desejar (recomendação: iris). Compare os resultados utilizando métricas de avaliação de clusteres (completeness e homogeneity, por exemplo) [3].\n", + "\n", + "* [1] http://scikit-learn.org/stable/modules/clustering.html#k-means\n", + "\n", + "* [2] http://scikit-learn.org/0.17/modules/clustering.html#hierarchical-clustering\n", + "\n", + "* [3] http://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation\n", + "\n", + "2 - Qual o valor de K (número de clusteres) você escolheu para a questão anterior? Desenvolva o Método do Cotovelo (não utilizar lib!) e descubra o K mais adequado. Após descobrir, aplique novamente o K-means com o K adequado. \n", + "\n", + "* Ajuda: atributos do [k-means](http://scikit-learn.org/0.17/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans)\n", + "\n", + "3 - Após a questão 2, você aplicou o algoritmo com K apropriado. Refaça o cálculo das métricas de acordo com os resultados de clusters obtidos com a questão anterior e verifique se o resultado melhorou.\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Parte 1" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "#Bibliotecas\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn import datasets\n", + "from sklearn.decomposition import PCA\n", + "from sklearn.preprocessing import normalize\n", + "from sklearn.cluster import KMeans\n", + "from sklearn import metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3\n", + "0 5.1 3.5 1.4 0.2\n", + "1 4.9 3.0 1.4 0.2\n", + "2 4.7 3.2 1.3 0.2\n", + "3 4.6 3.1 1.5 0.2\n", + "4 5.0 3.6 1.4 0.2" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Carrega o dataset iris\n", + "iris = datasets.load_iris()\n", + "df = pd.DataFrame(iris.data)\n", + "y = iris.target\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123
00.4018860.2758040.1103220.015760
10.4140660.2535100.1183050.016901
20.4026670.2741560.1113760.017135
30.4000150.2695750.1304400.017392
40.3954820.2847470.1107350.015819
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3\n", + "0 0.401886 0.275804 0.110322 0.015760\n", + "1 0.414066 0.253510 0.118305 0.016901\n", + "2 0.402667 0.274156 0.111376 0.017135\n", + "3 0.400015 0.269575 0.130440 0.017392\n", + "4 0.395482 0.284747 0.110735 0.015819" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Normaliza as features antes de aplicar PCA\n", + "norm = normalize(df)/2\n", + "df = pd.DataFrame(norm)\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3WdgVFXawPH/uXdqEiAEQu+9o0gR\nEUEQGyoKqNgbltVF17Kuuta1vPaya1tdC1ZQFAUbIiBSFOm9hd4DSQgp0+695/0wIWQyd1LIQArn\n94XMrWfCZJ572nOElBJFURRFKUqr7AIoiqIoVY8KDoqiKEoUFRwURVGUKCo4KIqiKFFUcFAURVGi\nqOCgKIqiRFHBQVEURYmigoOiKIoSRQUHRVEUJYqjsgtwNOrXry9btWpV2cVQFEWpVhYvXnxASpla\nlmOrZXBo1aoVixYtquxiKIqiVCtCiG1lPVY1KymKoihRVHBQFEVRoqjgoCiKokRRwUFRFEWJooKD\noiiKEkUFB0VRFCWKCg6KoihKFBUcFEVRlCgqOCiKoihR4hIchBDnCiHWCyHShBAP2Ox3CyEmFuxf\nIIRoVWRfDyHE70KI1UKIlUIITzzKpCiKohy9CgcHIYQOvAGcB3QBrhBCdCl22E1AlpSyHfAK8FzB\nuQ7gE+A2KWVXYDAQqmiZFEVRlIqJR82hL5AmpdwspQwCE4ARxY4ZAYwv+HkSMFQIIYCzgRVSyuUA\nUsoMKaUZhzIpiqIoFRCP4NAU2FHk9c6CbbbHSCkNIBuoB3QApBBimhBiiRDi/jiUR1EURamgeGRl\nFTbbZBmPcQCnA32AfGCGEGKxlHJG1E2EuAW4BaBFixYVKrCiKIpSsnjUHHYCzYu8bgbsjnVMQT9D\nHSCzYPtsKeUBKWU+8APQy+4mUsp3pJS9pZS9U1PLlI5cURRFOUrxCA4LgfZCiNZCCBcwBphS7Jgp\nwHUFP48GZkopJTAN6CGESCgIGoOANXEok6IoilIBFW5WklIaQoi/Ev6i14H3pZSrhRD/AhZJKacA\n7wEfCyHSCNcYxhScmyWEeJlwgJHAD1LK7ytaJkVRFKViRPgBvnrp3bu3VCvBKYqilE9Bn27vshyr\nZkgriqIoUVRwUBRFUaKo4KAoiqJEUcFBURRFiaKCg6IoihJFBQdFURQligoOiqIoShQVHBRFUZQo\nKjgoiqIoUVRwUMokJxAgP6TWYVKUE0U8UnYrNdiGjAPcP/0n1hzYD0C/ps14cdh5NExKquSSKYpy\nLKmagxJTtt/PZZMmsDJ9H4ZlYVgWf+zcwWWTJmBaVmUXT1GUY0gFByWmyevWEDTNiJWbTCnJ9OUz\nZ/u2SiuXoijHngoOSkybszLxG0bUdsOS7DiUXQklUhTleFHBQYnppEaNSXA6o7brmqCLWo1PiaO8\n7Dx+nTiPWRPmkZOVW9nFUVAd0koJhrfvyGsLfidk5hAq6GNw6zpdUhvQq1GTSi6dUlPM+eoPnrv2\nP2gODSSYpsW9/7uNIVcMrOyindBUzUGJye1wMPnyKxndpRt1PR5SExK48eRT+OjiUQghKrt4Sg2Q\nte8gz177HwK+IL4cP75cP0FfkJfGvs3+nRmVXbwTmqo5KCVK8Sbw9JBhPD1kWGUXRamBfpv0B3aP\nGdKy+HXifC6998LjXiYlTNUcFEWpNEFfENMwo7abhkXQF6yEEimHqeCgKEql6Tu8F5pDj9rudDvo\nd0GvSiiRcpgKDoqiVJqWnZtx8V/PxZ3gRgiBEOBJdHPejUNod1Lryi7eCU31OSiKUqlufu4a+l/U\nhxmfzgEpOfOK0+k+sHNlF+uEp4KDoiiVrtuATnQb0Kmyi6EUoZqVFEVRlCgqOCiKoihR4hIchBDn\nCiHWCyHShBAP2Ox3CyEmFuxfIIRoVWx/CyFErhDivniUR7EXMAw+Wr6UUV98xphJE/l2/VosKUs/\nUVGUE06F+xyEEDrwBjAM2AksFEJMkVKuKXLYTUCWlLKdEGIM8BxweZH9rwA/VrQsSmymZXH15C9Z\nvT+9MJneqvR9zN22lRfOPq+SS6coSlUTj5pDXyBNSrlZShkEJgAjih0zAhhf8PMkYKgoyL8ghLgY\n2AysjkNZlBhmbtnM2gP7I7Ks5hshvk/bwMYMlaZAUZRI8QgOTYEdRV7vLNhme4yU0gCygXpCiETg\nH8ATpd1ECHGLEGKREGLR/v3741DsE8vcHdvsl/mUsGDXjujtiqKc0OIRHGxTo5TxmCeAV6SUpebo\nlVK+I6XsLaXsnarSRZdbg4REXFr0TFRdE6R4EyqhRIqiVGXxCA47geZFXjcDdsc6RgjhAOoAmUA/\n4HkhxFbgb8BDQoi/xqFMSjEjO3dF16JjtFPTGdq6TSWUSFGUqiwewWEh0F4I0VoI4QLGAFOKHTMF\nuK7g59HATBk2UErZSkrZCngVeEZK+XocyqQU07hWLd4ePoJkj4dEp4sEp5OmtWrz6chLcTvUXEhF\nUSJV+FtBSmkUPO1PA3TgfSnlaiHEv4BFUsopwHvAx0KINMI1hjEVva9SfgNbtuLPsX9h9f50XJpG\np/qpal0GRVFsCVkNx7n37t1bLlq0qLKLoSiKUq0IIRZLKXuX5VjVnlCNWVKyeM8uMn0+ejVuQmpC\nYmUXSVGUGkIFh2pqe/ZBrp78JVk+H0IIgqbJ2JN7c2//AaqpSFGUClO5laohKSVjp0xmd04OeaEQ\nucEgQdPkg2WLmbFlU2UXT1GUGkAFh2ooLTOTXTmHovIi+QpyJymKolSUCg7VUG4wgK7Z/9dlBwLH\nuTSKotREqs+hGuqS2iB6Djrg0XXOb9fhqK4ppeTb9et4f9lisv1+hrZuy+19+lE/Qc2eVpQTkao5\nVENuh4OnhwzD43CgF3Q+ex0OmtWuw1U9Tjqqaz479zf+OfNnVqXvY8ehbD5duYwLP/+Ig35fPIuu\nKEo1oWoO1dSFHTvRrl49PlmxjH25uZzZug0jO3XB63SW+1oH8vP5aMVSAqZZuC1kWRz0+/l05XLu\n6HNqPIuuKEo1oIJDNda5fipPDxlW4eusTt+HS9cjggNAwDSZt2O7Cg6KcgJSzUoKDZOSMCwrarsu\nBM1r16mEEimKUtlUcFDoVD+VtnVTcBQbAeXSda4/qVcllUpRlMqkgoMCwAcjRtGnSVNcuk6C00mK\n18ur5wync321doainIhUn4MCQL2EBD4deRlbsjLZnp1Nn6ZNSXC6KrtYiqJUEhUcFAAChsHDs35h\n6oZ1hc1Ld/Xtz82n9CnzNTJ9+Xy3YT378/Po27QZA5q3RFN5nhSlWlLBQQHgidkz+X7DeoKmSbBg\n1NKrC+bTuFYtLujQqdTzF+3exfXffoVlSfymwQfLltCjQSM+vHgULj16eVJFUao21eeg4DdCTF63\nBr9pRGz3GQZvLFxQ6vmWlNzxw1TyQ6HCa+SHQizft4eJq1Ycdbl8oRA/b9rIdxvWkeVTk/EU5XhS\nNQeFQyXkY0rPyyv1/PUH9pMXCkZt9xkGk9au5pqeJ5e7TPN2bOO2775FIJBIDMvi0UFDuKJbj3Jf\nS1GU8lM1h+NEWplIcy9VceW9+gmJJLqiO58FcEqTJqWer8VIAgjETBBYktxgkFu/+zacjjwUJC8U\nImCaPPnbLNIyM8p9PUVRyk8Fh2NMmulYGVcj0wci9w9DHhiKDC6s7GJF0ITg0TPOxOtwRGzzOp3c\n2//0Us/vkFKPZI8narvX4eDyrt3LXZ6ZWzZh140dMk2+Xrum3NdTFKX8VLPSMSSlRGZeA+Z2oCA1\nhbkTmTUW6v+I0Et/Kj9eLurYmXoJCbz+5x/sPJTNyY2acFe//rRNqVfquUII3h4+gqu+/hJTWgRN\nE6emc3qLFozu3LXcZfGFQlFrVQCYUto2Xyk1X05WLjM/m8u+bfvp0r8D/S/sje5QAx2OJRUcjqXQ\nIrD2URgYDpMGMn8CotY9lVKsWAY0b8mA5i1LPW5fbi6bsjJpWSeZprVrA9CtQUPm33gLP29K44Av\nj75NmtGzUeOjKsfAlq1sg0OC08nZbdsd1TWV6itt6RbuPfMxTMMkkB/Em+ShcduGvDrnSbxJ3sou\nXo2lgsOxZO4B+wYSMLcd79JUmGFZ3Pvzj/yYtgGHpmFJyRktW/Hvc4fjcThJdLm4pHOXCt+nSa3a\n/LXvqby5cAEB08SSkgSHkzNbtea0Zi3i8E6U6uTpK18l/9CR0Wq+XD871+9m4nPfcP2TV1RiyWo2\nFRwqSEofBOaADIL7NISWcmSnsztIw+YsLzj7HdX9VqfvY+LqleSFQpzbtj1D27Q9bhPN7p32A1M3\nrgcoTNT369YtPP3bbJ4cclZc73VHn1MZ0Lwlk9asxm+EGN6hI4NbtkaoSXUnlP07M0jftj9qe9Af\nYsZnc1VwOIZUcKgAGViAPHhbkQ0GstYDaIlXASAcrZGeYeCfARx+8nGCloLwjij3/T5ctoTn588h\nWPA0PW3TRvo2bca7F1x8VKOCymN/fl5hYCjKsCwmrV3FE2cOjXuQOqlRY046yqYppWbQdI1YA/x0\nR8mfedMwSVu6Bd2p07ZnK/x5fpxuJw6n+tori7j8loQQ5wKvATrwPynls8X2u4GPgFOADOByKeVW\nIcQw4FnABQSBv0spZ8ajTMeatPKRB28FmR+5I+c5pKsPwhlerlPUeQHp/ATyPwPpA2dXMLcj009D\n6k0Rte5GeEpfkyHTl8+z834rnL0M4Ylmf+7ayS9bNnFO2/ZxfX/F/bhxQ8x9QdMkZJq4HeqPTomv\neo3r0rJLMzYt2xoxDNztdXHujUNjnrdkxkqeHvMKoWAI07AwQwZSgu7QGTzmNMa9PhZvYvQIO+WI\nCj9uCiF04A3gPKALcIUQonjD801AlpSyHfAK8FzB9gPAhVLK7sB1wMcVLc/RklIiQ6uRgV+RVmbp\nJwR+JVZ/gvRNLnwlhI6WeB1a6jREnSchMA+MjYAPzDTkwXuxfN+Vervfd+zAqUWPzsgPhfiphC/u\nePEbhu27hfBvIVPNYFaOkX9OuJs6qbXx1vLgdDnwJLrpclpHRt093Pb4jD1ZPDriOQ5l5ODL8RP0\nBTENC8u0CAVCzJ44n3+NfvE4v4vqJx6Pen2BNCnlZgAhxARgBFB0QPoI4PGCnycBrwshhJRyaZFj\nVgMeIYRbShl7yu4xIM19yMwbwdwJQgcZQibeiEj6W+w2bukH7Oq7Jshc+1Nyngf8xbb6IecF8F5Q\nYhk9Toftl7MmBAk2E9jibXCr1rz8x7yImsthErj2my/pmtqQNnVTGNOtOw0Sk455mZQTQ7P2jfl0\n21v8MXURB3Zm0rFvO7r07xDzb/OXT37DMqMXrzos6A+x4re17N60lyZtGx2rYld78QgOTYEdRV7v\nBIr3thYeI6U0hBDZQD3CNYfDRgFLj3dgAJBZfwFzM+Ev9oKNeR+Cswt4zrE/yT0ADkV/USISELHO\nMbbab7f2ImUIIWKv/3x6jAynLl3nsjJONNufl8fjs2fyy+ZNCAHD2rTjsUFDqJ+QUOq5HerV5+ru\nPXl/2ZKofRLYlJXFpqwsnJrG24sWcP+AM7i0SzfbmdeKUl4ut5MzRvcv07FZe7MIBUIlHuN0Odi7\nJV0FhxLEoxfTLnwXf6Qu8RghRFfCTU23xryJELcIIRYJIRbt3x89euFoSWMHGGlEzUXAh8wbH/M8\noTeEpDsBD0d+jR5w9gbXAPuT9IYxLpZMaXHa7XAwfsQgHuq5iK/P+oZXT51Fj5Qs7jl1AD0blv4B\nD5omI7/4jOmbNhKywplXp23ayKVffm67RKidh884k6RSvuxDloW/INXFye+8waOzZhAyTdLzcjkU\nKF5rUpT4O3loD1ze2A9aAMFAiBZdmh2nElVP8ag57ASaF3ndDNgd45idQggHUAfIBBBCNAMmA9dK\nKTfFuomU8h3gHYDevXvHL0GRzCloSrLZZ2WXeKqWdDPS3Q+Z+zoE5gMSgn8gM0ZA8psIR7EPX+Jd\ncOhRjoxcAvBC0u2lDtGU5h66azfRrWMeghDd6u5neIvtaMmxO+WKmr4pjYN+H0aRTj3DsjiQn8fM\nLZs4u217Mn35vL90MbO3baVBYiJjT+5N/+aR8wou7NCJiatWUFo4kQXX/2TlMj5ftRxd05BScmqz\nFrx89nnUK0NtRVGOxu7Newn6Ytcc3AkuBl8+gPpNUmIeo8Sn5rAQaC+EaC2EcAFjgCnFjplCuMMZ\nYDQwU0ophRDJwPfAg1LKeXEoS/k52mP/a3CB5+zSzxd1IPAH4cFWgfC/xgZk5jVIGfkVqiWMgNoP\ngagL6OFza92FSLi21NvI3FdB5iAIf+g1YSHwIw89EnUfOxszM8gLRf/B+AyDjZmZZOTnc/6nH/G/\npYtZvT+dWVu3MHbqZD5duTzi+Lv69beNoyUxpQyPaLIsft+5nWsmf1klExAqNcNbf/sw5r76TVO4\n5tFLufudmI0USoEK1xwK+hD+CkwjPJT1fSnlaiHEv4BFUsopwHvAx0KINMI1hjEFp/8VaAc8IoR4\npGDb2VLK9IqWq6yEcCJrPwnZDxD+grcAD+j1EYnXl3q+zJ8AFJ/oZoE8CME/wX1q+DgpAQst4XKk\n97LwEFjhRYgyxufAXKKbvgjXbqx9oJc8H6BdSgqJTmdUgPA6HLRLSeG9pYs4GPBHdDj7DIP/mzub\nUZ274HGEq+m5wSBep5N8m0BTFoZlsf1QNiv27T3q9BqKEsvuTXuQVuwHj893/PeoriulZO2CjayZ\nv56UxnUZcHEf3F730RazWojLwHQp5Q/AD8W2PVrkZz9wqc15TwFPxaMMFaF5z0c6WiHzPwqnvHCd\ngUi4HKGVYcSNtYfo4EC4XcU6gJRBZM7L4JsA0od0dETUfgzhOqWchUwGy66vRYIovZxnt23Ps3N/\nw28YmAVP7Q5No15CAkNbt+W1P+bbjkTShGB9RkZhv0ZqQiJmGfsoYr4VBLtyDqngoMSFlJK9W9Nx\nuhzox2CCmxEyeHzkCyz/dTVGyMTpdvDGne/x0q//olXX5qVfoJpSKbsLCGcXtDrPoqWMR0u6qWyB\nARCuAYBd8i8DnCchsx8qmACXD0gw1iEzb0SGNpavgAk32NzHBe4zEFqtUk936TqTL7+KYW3a4dQ0\nnJrGOW3bMenSK3FoGqmJibbnBU2Tb9at5u/Tf+KbdWtw6ToXdeyMp9iEN7eu49HL9ofpNw26NYjR\nOa8o5bDmjw1c0/YObu52D9e2H8fjI1+IOXM6pXHdo7rH1Ld/ZtmsVfjzAhhBA1+On0MZuTwx6oUa\n3TyqprRWlPdCyHsPzF2E+xwAvOAdAcID/p8IN1cVFUDmvYNIfqHMtxHeUUgjDfI/BeEK53Jy9kTU\nea70kwukJiby5vCLCj/QRTvBx57cm0W7d+EzjtSCdCEImSafr1pJ0DT5MW0Dby9eyISRl+HSdSat\nWYUEarvcPHLGmTw5Zxb+fLtcUpFMyyJg2DSRKUo5ZO07yANnP4kv98gouE3LtpKUnEBOZuQKhkIX\n/Pv3p4/qPj+9N5NAfnSq+P07M9izeV+NHQ6rgkMFCeGBepOQeR+A/0fQEhEJV4PnIggtBeEOf5FH\nsMAo36xmIQSi9gPIpFsgtAH0xghH6em1Y10LIGAYZPl91PMmMLBlK+47bSAvzp+DQ9MIWRaGZSEL\nOpMhPBt728EsPl6xjCfPPIuHBw4mJxgkxetFE4IZWzbx3Yb1WKV0WUtg0tpVPHj6oKMqv6IATBv/\nK2axhwxpSYyQxSNf3M38KYvZtmYHPQd35ebnrkbXy7/+g2mY7LNJ/Afhv6Pi969JVHCIA6ElIWqN\ng1rjIrZLRyuwndOng7PbUd4rpbCT+2hZUvLS/Ll8uHwJknDfw7g+pzK2V28u79qddQf2kxcM8pcf\npkTNgQiYJlM3rmNcv/64HY6IfEr39B/AjC2bbEdFFVfSutWKUhb7tqYT9Ed/1izDJPtALg98NM7m\nrPL59Omv8OfZz8+pXa8WzTpUnQW74k31ORxDQksB78WEJ8oV3eFGJI6tlDIB/OfP3/lw+RJ8hoHf\nMMgNBnl1wXwmrV1NgtNJr8ZNaJVc13bBHQCvI3KCkZSSfbm5JHu8jCrDym8eh4NhbdSiPUrFdB/Y\nBW9SdPI8wzA5sCuD7AOHKnyPKW/8hGnYD8D454S7a3QKeRUcjjFR+wlIug1ECuAEZ29EyqcIR+uI\n46Q0kPLohoeWhyUl7y1dHNG3AOFhq6//+Ufh6+Z16tCqTnJUyg6vw8FV3XsWvp6/YztnfPg/Bo//\nH33efZPZ27ZSUuXdpWmc2qw5g1u1LuEoRSndwFH9aNAyFac78mHFMi2+fuV7rmr5F36fuqhC98jP\niZ1QsmPvthW6dlWngsMxJoSOlnQ7WsM/0BqtRqv3GcJ55Olamvuxsm5D7uuO3NcdK/NapLH9mJUn\naBox5yik50V24r01fASpCYkkOl0kOJ14HA7ObdeB0V3CTWKbszK5eepkduUcIlAwyW1XziHb2dOa\nEAxq2YqXzxnOuxdcfNwWKFJqLqfLyb/nP81l911I/aYphU/x0pL48wMEfEGevuKVEr/gS9N1QCfb\n7e1Obl3j17BWfQ5xJkMrkDkvQGg1aA0RSXcgYmRcldJAZo4pWE60oGMr+Ccy4zJInYnQ4p9iwq07\naJSYxO7cnKh9nevXj3jdMjmZOTfczLzt20jPz6NXo8a0TK7LvO3bOBjwM2fbVkLF5kYYloWzYOEh\nXdMQhGsrz551DiM6do77+1FObAm1vFz/5BVkZ+Tw/X9/idqv6RoLf1rGoEvLlrSvuNtfvYG7BjxM\nyB/ECJnoDg2n28m4NyqvWfh4UcEhjmRoNTLjagrTcpu5yOx/Iq1MtESbFBmBOWBlEjmJzgqnA/d/\nDwlR8wYrTAjBwwMHc8/0H/EXaVryOBw8YDN6yKFpDCpoAtqQcYDT3v8v/pCBRJIfCtmOS3I7HPxz\n4GAChoFT1xnWpl2ZMr8qytEyDSvmnIOS0neXpnW3Fry74iUmvTyV9QvTaNOjJaPvvYhm7Wv+BE4V\nHOJI5rxM9HoNPsh9DZlwRXRKbnOrzTBXgHyksTnm4joVdW77DiS6Xbz6x3y2ZR+kU71U7u0/gJMa\nNWbrwSwsKWmdXDeis01KyY1TvuZAfn4JVw4LmSYDW7SkSa3ax+gdhKVlZvD+0sVsysqkd5OmXN+z\nV8zJfErNduaYAcz6fC7+vMhRcGbIpHGbBpiGWWIzkJSSVXPXsW3NTlp0bkr3gZ0LP/8NW6Zyx2s3\nHtPyV0UqOMSTscZ+u8xHmukIR9PI7Y4OIJwQ1RGtg6PNMSniYQNbtGJgi1aFrzdkHOCsjz9gT24O\nAqjr8fKf8y7g5MbhoXor0veR7S895bbX4eDCDp2OeWD4fcd2xk6dTNC0MKXF8r17+WzlCqaMuZrm\ndeoc03srlScUDDHtg1+Z8elvOF0Ozr/5LAZddhonndmNIVcNZMYncwj6g+i6hmlaGCGTv5/1LxwO\nnTv+fQNnXR1dO87LzuPvZ/2Lnet3Y5kWQtdo1r4xL8x4jKTkE/dhQ3VIx5MeKz+8CfkfRW929QfN\nbpy0Cb5vSr2dlDIuI5z8RogxX01ky8Es/IaBzzDYnZvDtd9MItMXrin4QqGYw/ZSExJpkJBIm+S6\nPHD6IJ4ZGp3NNmiaTFm/lgd+mcZrC+azO+fohxlKKXlgxs/4DAOzICNt0DLJCfh5Yf6co76uUrWZ\npskD5zzF2/eOZ9XcdSyduYqXxr7Fy2PfQgjB3W/fykuzHueKBy+hQctUdIeGZVr4c/3kHszj1dve\nZeWctVHXffue8WxduR1frp+AL4g/18+21Tt46+4Pj/+brEJUcIgjkTQO+3WNgPwJyGJNSEJo4RXl\n7P4bQitj5l+S0sTKeRWZ3gu5rxvW/mHIwOyjLvf0zZuiOpYhnGp7yvp1AJzUqJHtvAevw8Gd/frz\nx9jb+OXaG7mmx0lRI5HyQyEumfgpD82czhdrVvHWwj8Z9vEHzN9xdKOyDvr97LXpULeAuTu2HdU1\nlapv0U/L2Lh4M4H8I01H/rwAsybMY9ua8GKUHfu0Y/gtwziwMwMjGPmZDuQH+OKFb6OuO2vCPELB\nyKHdoaDBrxMrZxWBqkIFhzgS7jNAxOp4lWAdjN5sbAa7wZ/CEe6TsLtSzrOQ9wHIvPB1zW3IrHHI\n4OISyxcwDH5M28CHy5awdM/uwg689Lw824ysfsNgT8GXsMfh5Okhw/A4HOgFX/4JTicd6tVndCkT\n3z5YupjNWZmFQ2iDlonPMPjbtO9jTrQribeEzJu1XDU7jfKJbNH0FRF5lA6TSJb/eqRJN2vvQRwu\n+89I8VQYGXuyCAbta9+mYdboxHqlUX0O8ebsCcH50duFEzSblaecPSG4gKjkfDIU7pMoRlp5kD+B\nI0n+DvMjc19HpHxgW6wtB7O4fNIEfKEQIctCFxq9mzTh3QsvoXfjJjg0nVCxVBmJTid9mx5pKhvR\nsTOd66cyYdUKDuTnM6R1W85v3wFXKTlrpm5cT8Am+OSHQqRlZtChXn2bs2LzOJyc07Y9P29Oiwhq\nXoeD63ueXK5rKdVH3YZ1cLodhAKRT/m6Q6dO/SOZiVt0booZiv68OZw6Jw89st76+Me/YOJz3yAQ\nyGLj7jRN0GtYzxo9A7o0quYQZyLpbqLSZeCFpLsIr5Ba7PiEK8PZWyP+KzzhVNx2ifWs/eFlTe0Y\nm2OWa9yP35GRn09eKETQNPEZIRbu3sX4ZUvo0bAR/Zs1x1skT5Jbd9ChXn0Gt4ycydyhXn0eHTSE\nf593ARd36lxqYADwxDjGkhJ3GdN8F/f0kGH0atwEj8NBLZcLl64zomNnrjup11FdT6n6hl0zCM3m\ns6TrOqdeeGR9FG+Sl6sfHY0n4UgtUndoeGt5ufS+iwBYPH05k16aQigQihrq6vK6qFWvFuNev+kY\nvZPqQdUc4ky4ekLKeGTO82CsA60BJN6BlnCR/fF6faj3FTLn/8LrUAsvJIxBJN1hfwO9EdhWdQU4\n7Gdz7svNZVNmRtScBL9hMGH1Sm4+pQ9vXzCCCatWMGHVCgwpuaRTF67reRK6VvHnhyu792Tj7Fn4\njCPVdwE0r12HlsnJR3XNWm4z/Es+AAAgAElEQVQ3n428jM1ZmezKOUTHevVpkFi2NTiU6im1WT0e\nm3Qvz1z1GpZpIS1JQu0Enpzyj8JV2Q43A435xyU069CEL174lqy92fQa1oOrHh5VuG701Ld/jhr2\nCqA7dS66/RyufmQ0ibVP7Lk5ojq2qfXu3VsuWlSxnCnVgbTykXn/A/+3gADvKEi4EQ49FJ4kF9FX\n4UHU+zwiNUfAMPh4xTI+X7WCrQezbCestahTh1+vO7azPS0pue/nH/kpbSNCgCY0Ep1OPh99Oa2T\nj24BFuXEZYQMNizahO500L5XazRN41BGDq+Pe485Xy9AWha9zzmJO9+8mQbNI5ss9+/MYOpb0/j+\nnV84lBE9qCGhtpfHJt1Hr7N6HK+3c1wJIRZLKXuX6VgVHKomKU1kxmgw0jjSv+AuWC70IBF9DqIO\nJL+N5j6lyPmSq77+kmX79kTMhC7Krevc3KsP9/QfcMzeR1FpmRks3rOb1IREzmjZCkccaiWKYpom\nN3e/lz2b9mIU9DVoukZyam3Gp71e2LyUtnQL9wx+DCMQihqddJg7wc2k9PcimqRqkvIEB9WsVFUF\nfgNzC5EdzwGw9tkcHEQQOeLij507WJG+N2Zg8DqcpHi9dEltQNA0y9R3UFHtUurRLqXeMb+PcmJZ\nMn0FB3ZlFAYGCKfMyM/x8+vE+Zx7w5kAvHLrf/HFSMKn6RpOl4O73rq5xgaG8lKPblWUDC0rWHe6\nLAf7o+Y5LNm7G3/IPjA0rVWbkGVy0Ofj/l9+4tT/vc3yfXsrWmRFqRQ71u3GCER/1v15frauDs+l\nCQVDpC2JPWDD5XZy64vXMuwatTrhYSo4VCLLysHK/idW+hCsjEuxAnML9wm9cbhzukwcoEWmq2iQ\nmITHZj6AR9dJz8vFsCzyjBC5wSAHA35u+PYrQqZJyDRJz8u1nfegKFVRiy7NcLijP+veJA9tuodH\n/OXn+NFKyK3kzw/w379/xJZVxy5dfnWjgkMlsYydkN4PfF+CtRNCyyHrRqxDL4YP8AwHiiXqi5mK\nT0N4I0dDndeug22bvill1HwGCCfLe2TWL5zy7psM+vA9er3zBq/9Md92EtCGjAO8uXAB7y5ZyK5D\nFV9tS1EqotdZ3WnQIjVi4pumayTU9tJv+Mk8edlLXNHsFiybz31RoYDB169+f8zKmZOVy3f/nc6n\nT33Fqrlrq/wEO9UhXUmsAyPBWGWzR0OkzkPo9ZChtciD94C5E5DhZHyJN8GhJzkyUsmE2s+hec+N\nutLa/enc/sNU9uXlAtAwMYlmtWszzyZthUvTQRA1qezOvv25tXffwm0vzp/L+8sWEzJNdKEhBDw+\naCiXd+sedU1FOV5ysnJ56+4Pmf3FfCzTot8Fp/DXf9/I63e+z58/LCUUKFsOsu5ndOblX/8V9/Kt\nnr+eB897CmlKgv4gLq+Lnmd244mv/35cFw1SHdLVgbE6xg4LQn+Cfh7C2RmR+iPS3AsIhN4QAOk5\nD4ILAQNcfRExmp86pzZg5rU3sj07GwgPW/1+43qW7t0TtRpc0IpuRvIZBv9dsrAwOKxK38f7yxYX\ndnKbMnzO47NnMKRNG1ITTtwMlkrlOrArk7ULNiKEQHc62LR0K1tX7ShXYHC6HORm5XFT17tp1DqV\ny++/mB5ndKlw2UzT5IlRL+LLOZL6w58XYPmsVUz/+LfCDvOqJi7NSkKIc4UQ64UQaUKIB2z2u4UQ\nEwv2LxBCtCqy78GC7euFEOfEozzVg30TkZTwzpJ1PDPnV9IyM8JH6o0KAwOAEC6EewDCPShmYDhy\nrKBlcjItk5MRQnBuuw6c1LAxCc5wk5UmBB6HI+aynQf9fsyC6vj3G9YTtBn9pAnBzM2bSn/LinIM\n+PMD3Dv4MXau303AFySQH2Dv1nSeGPUiDmfZnso1XRAKGmxZuZ3ta3fy5w9LuXfwY/x96OOYRvSD\n07Y1O3jkome5OOU6rms/ju/emR6zmWjTsq3486JzQvnzAkx7f2b53uxxVOHgIITQgTeA84AuwBVC\niOLh9iYgS0rZDngFeK7g3C7AGKArcC7wZsH1aj7XwKhNUkLQ0nlxscEHy5Zw0YRPmLI+OsVwRTg0\njQ8vHsULw87lgvYdubxrdyaOHkPHGPmNBLBo964jL2yCmkDACZyDRqlc87/5E8Nm3oIlrZjzGYpy\neZw43S7bfctmreafFzwTsW33pr2M6/8QC75fTN7BfHZv2svb94zn/X9+Vv7CV+E/m3jUHPoCaVLK\nzTKck3oCMKLYMSOA8QU/TwKGinBGqxHABCllQEq5BUgruF6NJ5KfB3HkC1lKMKXg+tnnY0oNU0r8\nhsFDM6bjC1V8zYbDNmZkcPPUyfx9+k8s3rObtnVT6JragLv7nVaYbbUoCdz5Uzh76gXtO+KyaR81\npMUvm9M45Z03GfLR+3y2cnmV72xTaoaNSzYz8/N5BHzRqTCCvhDdTu+Eu5R5C5YpMWIM+wZYPH0F\ni35eXvj682cnE8gPRmSxCeQH+PrV78nLzos6v93JrfEkFs+3Bp5EN+fcMKTEslWmeASHpsCOIq93\nFmyzPUZKaQDZQL0ynlsjCa0uosFcSP4PeC9l4rZz6frVTSw8ELn4j6YJFu/ZXeK1pLEVK+svWPt6\nYaUPwsp9HymjR2bsyM5m5Bef8du2reSHQuzJzeGl3+dy+ZefM+6n2Omz80JB1mccoGuDhtzaqw9u\n3YFT03DrOi5dRwNmbd1Clt/H1oNZPD3nV56ec/TrSyiKZVkES+grsCyL/7v6Ne4+41EWTVuGZdqs\nNZLkYfTdF/DAx+Po0LttzGuZhoEsaSSThG9f/7Hw5drfN9iuS+1wOdiVFj1fSNM0HvvqPry1PHgS\n3GiawJPo5qQh3Rl2zRmx71vJ4tEhbVcxKv4/FeuYspwbvoAQtwC3ALRo0aI85auyhNAQnnPAcw6/\nZXyLKdOijpGy5PULpLkXmTEKZC4gw//mvoY0NyPqPBVx7DtLFhIwQhG/YJ9hsHjvnhLLKaXEIcLP\nEXedehoXduzEjC2bcGg66/fvZ/L6NRGBxWcYfLpyGXf06Uddb1nnaigKBHwB3r73I37+cBahoEHr\n7i24661b6HJqZPr62V/8zvxvF0Ys/FOUy+uiVbfm9D73JHRd5/RL+vHYqBeYP/nPqGOlhMTaCeRm\nRT/1H3YoM7fw52Ydm7B97c6o/JdG0CC1mX0GgK6ndeSzbW8z+4v5ZB/IocegLnQ9rWOVTgkej5rD\nTqB5kdfNgOKPuoXHiHDe6jpAZhnPBUBK+Y6UsreUsndqamocil21XNmtZ0TK7MMSnU5ObmS3lGiY\nzPsQpJ/ImOoD3zdIM3Jhk2V792AcRXNPamIi7VKOrEXRpm4KN/fqww0n9WJtxn7beRMuXSctK6Pc\n99qdc4iX5s9l3I9T+WTFMvKCwdJPUmqMp8a8ys8fziLoDyEtyebl2/jHsH+xc0Pk18KP78+wzaoq\nNEGjVqlc+9ilvDjzcfQiaWGufHAkmm7/lZfSKJl2vVrb7nN5nAy6tH/h6yseuASXN7KpyuV10f+i\n3tRtGDvLcFJyIsNvGcaVD42k24BOVTowQHyCw0KgvRCitRDCRbiDeUqxY6YA1xX8PBqYKcON0lOA\nMQWjmVoD7YHo0H4COKNlK67v2Qu3rpPgdNIk0eLWzuuYesFuRGA64da4I6SUSGMrBH8H7KrfGjK0\nPmJLu5SUmKOS7HgdDpLdHt4ePgIhBAHD4Ll5v3HKO2/S/a1/M+7H72iUmGR7zaBp0iSpts1VY1u0\nexdnf/wh7y5dxPcbN/B/c2dzzicfFq5jrdRse7ems2T6coL+yM9zKBBi0stTI7bZNesAeBM9/OPj\nO7n8/otxeSI7mdv3ah2xKNBhLo+ToVcN5PUF/8egy06L2Od0O2nSrhHnjR1auK1jn3Y88sU9NGhR\nH4fLgcvj5KyrBnL/h38t1/ut6ircrCSlNIQQfwWmATrwvpRytRDiX8AiKeUU4D3gYyFEGuEaw5iC\nc1cLIb4A1gAGcIeU8oTN2/D3AQO5usdJrN0zi9NrPYIuTARBZPYU0FtCymcILREZWoU8eCeYGUSt\nIFfID4ceRDq/RujhmtYtp/Tl501p+IoMR9WFwJLF18ECl6bx9JBhnNeuA+6CGs3YqZNZtHtX4apu\nP6ZtoLbbjUvT8BeZPOfSdU5t1oKmtcseHKSU3Df9R/KLrPngMwxC+Xm8tuB3nhg8tISzlZpg96Z9\nON3OqOBgGhZbVu2I2Hb2tYNZ/2daVO1Bd+p07tfe9vqapvHgp3fxyEXPYoZMjJCJJ8lDkzYNEUIw\nIvlaAnlF/p4EgOS+92/HW6xDud/5vfhky5vkZOXiSfTgchfPZlD9xWWeg5TyByllByllWynl0wXb\nHi0IDEgp/VLKS6WU7aSUfaWUm4uc+3TBeR2llD/GuseJolFSEoPrPIlD+BCHv/hlPhibkHnvIa1D\nyMxrC2ZN+4ASYqmVgTz0ROHLzvVTeffCS2idXBddhDuUR3TsTMOkJNwF1W9BuMbwxOCzuLhTl8LA\nsGZ/Okv27I5Y7tOSkoBhMLhVGzwFK7ppwOnNW/D6eReU632n5+WxLzc3arthWfy8KbovRql5WnRq\nEhUYABxOB536tovYNvSqgfQc3BVPYrh5x+Vx4klw8/CEu0uccWwaFrVSkrAsiaYJ2vZsyVnXDOTT\np7+KDAwAMtyPMP7RL2yvJYSgdkqtGhkYQM2QrnKk7wuQ2TZ7guCfAnoDSgwIEQwIzERKWdi+eVrz\nFsy49kbygkFcuo5T18n2+xm/fCmzt22hQWIiN558Cn2aNIu40roD+23bSH2Gwc+bj3x5CyH4Y9dO\nth7MomuDhlHHx+J26DFHS9n1xSg1T/2m9Rh0+WnM+fJ3Ar7wF7UQ4PI6GfW34RHH6g6dJ6c8wIrZ\na1gyYyV16tfizCtOp26DOjGvv3nFNh4f+TyB/CNBYMOizWxYtClqXerDpAynvjgRqb+6qib/y9j7\nJEgzHaR9TvqYJ9lIdB1pj63j8XBnv/7c2a+/7bEALerYd7QJiPhSN6UkPxTi6Tmz+WzUZWUuZbLH\nS+8mTflz107MItfzOBxc1aNnma+jVG/3/e8vNG3XiG9f/4n8HB89Bnbmtpevo0GL6EEoQgh6Du5K\nz8Fdba4U7cuXphCy6c8oTXJq+frOagoVHKoaGd20Ush9FsLVC5mfYLPWw+GqtBm5zT04LqMiTmnc\nhJZ1kknLzIgYnRRr7NPSUobH2nnlnPO56usv2ZMbXr7RtCRDW7fhup69jqbISjWkO3Sufng0Vz88\nOu7X3r52F5YV/YkVmkDabAfwJLi57H779d9rOhUcjiMpJQR/Q/p+AOFAeEciXKdEHuQeBPnbCffP\nF6VDrXHhNR4cnSG0Gjicr8UDzu5g7gYrC8gHvCBqI2o/HpeyCyH4dOSlPDzzF6ZvTsOSkkZJtdid\nc8g2QCR7omeElqZBYhI/X309C3fvYndODj0aNqRN3ZTST1ROaFJK/Hl+XB5Xif0N3U7vxOblWyNW\njAPQdQ3NpUX1dzhcDkbdewHnjz3rmJS7qlMpu48TKSUy++8Q+KXgqV8AHki8Hq3W3UeOMzOQGReC\ndYgjI5FcUPsptISLAbDMDMj7GPw/g6aBdzQi4cpw8Mn+GwRmU1iT8I5E1H6E8PSS+AgYBjd8+zXL\n9+2JGPl0mNfh4O5TBzC2V5kyAyvKUVv083L+c8e77Nt2AIdT59wbh3DLi9fadhLv35nBzT3uIf+Q\nr7Cm4E5wc/7YofQb3ov3H/qMnRv30qh1KsNvGcZZV5/B5uVbefve8WxesY069Wsz5oGLuej2c6v8\nHIVYypOyWwWHY0RKPwR+BesguE4Faz8ya6xNf4EbUf97hOPIrG9pZSLzPoLAXNAbIxJvRLhODo9U\nyv5HeH1pNNDqIuo8jXCHk/hZeR9CziuERzEd5oGE69Bq3xu39zZn21b+8sOUqLTfAE5N56ruPXj4\njDPLNadCUcprw+JN3DPo0YgOZpfXxemX9OX2V29g0bTlOJw6fc47mYRa4Zn6u9L28N5Dn7Fs5ipq\n1U1k5N0XcNFfzrH9sl+/aBP3Do68vjvBzWV/v4hrHyt7f1pVooJDJZOhlcjMGwATpEnhQj2GXYZV\nD6L2PxAJV5V6XSvjCgitIHLSmwdR7yuEsz1W+kCw9kWfKBIQDZbG7Wnn+XlzeHtx9FxFXQju7Nef\ncX1jd2wrSrw8MfpF5k3+MyrJo+7Q0XSBw+kAIZCmxSNf3kvf804u1/UfOv8ZFv60NGq7J9HNpPT3\ncHtLTuhXFZUnOKhlQuNMShOZdSvIQyDzCPcLBMDYiP2vWyvTWtHS2FTQz1D8aT2EzP8w/KOVFeNk\nn815R69+QkLhvIii3A4HzWrFHkqoKPG0Y90u2+y/pmESChj4cv34cnz48wP869KXyD0YO3eSnS0r\nt9nvEIKM3TH+1moQFRziLbQixlDTWCmBJbiHlXpZaezGPk+hCcaW8I/OGEP69JaEM5vEx0UdO6OJ\n6I+OLgTntLOfnaoopTFNk6UzVzLvmz85lJlT6vGd+rWPmSupOE0TzP92YbnKk9rcPomeNC1SGtct\n17WqIxUc4i5EzBU89NaAG0QiiKRwc0/dNxBadL4XKOjENvcgrYPg/4HIvoTD3ODqB4Co9RDgLXL/\ncKe3qP1oRd5QlPoJCbx30SWkeL0kOl14HQ6SnC4a16rN7T9MYeaWzaVfRFGK2LxiG1c0u5XHR77A\n89e/zhXNbuWrV78r8ZwxD1yC2xv50BNrtJJlWoUT68oi92AeW1fviN4hYPhtw/CUskZETaCCQ5xJ\nKWzmIAB4EYljEQ3mIeo8g6jzHKLB7wj36fbXCcxD7h+E3H8OMv008E+2v6FwIRKvKfixJ6LeRHCf\nDXpzcA1CpHwc8x4VcWqz5iy46Tbev+gSUhMTMaTFhowD/LZtK+N+/I5X/pgX93sqNZNpmjxw7lNk\n7csm/5CP/EM+gv4QHzz8eYmzk5u1b8yrc5/ilGE98CR5aNCiPhfdfg7uhOhaspSyXH0Ov3zym/2a\nDU4HvYZ0L/N1qjM1zyGOZGgDZI0Fin+oHODsCd6LEMIJnvNKvo6xGZl1O/Y1hWI8FyK0I3MBhLMT\nou5/yl320mzKzODXbVvxOhyc2649Kd4EdE0jLTOD/Xl5+IsMafUZId5ZvJBrepxM/YSEuJdFqVlW\nzVlnm3476Avx/TvT6Xpax5jntunRkmenPVL4WkpJXnY+v036HX9eAKEJXB4nVzxwCQ1blj3V/471\nuyJGKR2m6Rr7th0o83WqMxUc4kjmvQ3YLT4iIPnVcGAo03U+Jna21aJcoMde6yFenpkzm49XLENK\nia4JnprzK6+fdyFDWrdh5tbNtnMdnLrOkj27OLut6oNQSpaf47NdglxKSU5mCRkDbAghuO/92xl6\n9RnM/mIeTreTYdcMomOfdqWfXETH3u3wJM3Gn+uP2K5pGm16tizXtaorFRziREoJgTlE1xoA4UZY\ne0Av42xfcxtlS66nIbxHpvbL0EYw1oGjJTi6x2Xo6oKdO/h05TICZkEAKHh7436cysKbbyc1IRFd\niIh8SBD+fahV4JSy6HZ6J4xg9AOGJ9HNGaPLPyxaCEGvod3pNbT8zT+blm9l18Y9tOnZkjr1ahEK\nhDALZlS7PE7a9GxZYk2mJlHBIV6Cv8XOiySDoJdjaWxHewguwHb4qUgg3FVkQe0XEHojpAyGm6GC\nf4LQQVrgaAspHyC0oxtauiM7m09XLuO7Dettawa60JizfStX9ziJb9avxSxyjCCcSO+UxifEcuBK\nBdWqm8TNz1/D/x74pHAFOE+imzY9WjJ4zGmlXyAO8g7l88/znyFt2VZ0h4YRMul+eid6Du7C/CmL\ncDh0hl03mGsfv6zazo4uLxUc4kTmf0nMp33XAIQWe/nAwmvIAPLgOAjMJzoweMEzHOEdDhjg6oso\nmB8hc18vCCaBI5nwjPXI7McQdV8t93tZuHsn13/zNYZl2i4BCuHbmJakS2oDnhkyjEdm/YIQAtOS\nNEpK4r2LLlEzpJUyu/iv59Gpbzu+/+90DmXmMnDUqQy6rD9O1/FZK+H1ce+xYXFk6u6Vc9Yy6p4L\nmJzx4XEpQ1WjgkO8SPuFzsEJCVcCYAXmgH866G0g4Wo0LfLXL3NehsDv2PY3uPoh6jyFsJlfQP4X\nRPd1hCDwE5ZvGsIztMy5laSU3D99Gj6j5ElzprQ4vUW47fXiTl04r10HVqbvI8nlomO9+ifM05US\nP536tqdT3+PfR2WaJrO/mB+1pkPQH+KHd37hxqeuPO5lqgpUcIgT4b0QGfyTqBFGwgHOk7DSzwRr\n15Htuc9hpUxEc/U4ss33JfYd2oTXirb2g263gE6swGRB9v3IvBaQ8jlCSyr1fRzw5RemzLbj0nSE\nEDw39Bxqu4+M9XY7HPRuopqRlOrHNKzCfoXi7EYsFRUKhsg+kENyau1wuo4aRM1ziBfP+eA6paBP\nAMJx1w2Jd0H2w5GBAQATsq6N3CT9xKaF+xTsuAYS+7/SB8YWZN5bpb0DADy6g1jptmq73dzTfwC/\nXHsDF3bsVKbrKUpV53I7aderTdR2TROccrb9QlOWZfHBoxMYWe8Grm8/jtENbmLSy1Nt03lUVyo4\nxIkQDkTd/yGSXwPPZeFJaFiQ9x8ITrM/SeZjhdYdee0qIR+W0CHGTGpR+0EQyRxZ8Ke4IPimluVt\nUMvt5vQWLXBqkR8Nr8PBX/ucyi2n9KFprRNzZSyl5rr7v7fireXF6Q4//bs8ThLrJnLrS9faHv/5\nM1/z1cvf4c8LEPAFycvOZ/yjE5n24azjWexjSgWHOBJCQ7gHhdeANncBoYLkeyWwDh05v/ajRWoe\nxTnBNcD+vnpjqP8tMdN2AOX5r35h2Lm0T6lHgsNJotOFW9c5u007bjhJrcim1Dz5OT62r9vF1Y+M\n4vybz6L/hb256uFRfLD2NRq3jm7GlVLy5UtTCeRHNuf68wN8+tRXx6vYx1zNaiSrAqR1EAKzKNsk\nNiB/IpZWD6GnIhztoP40ZPYjEDy8YE9B1ta675U4iU5YGUjhBmmX4E+Ad2SZ30OKN4GpV1zDivR9\n7Dp0iK6pDWiZXPpoK0WpaoL+IBOf/5afx/+KZVoMvWogVzx4Cd6k8Ei/JTNW8tjFzyE0gWVKLNPi\nqn+O5MqHRsW8ZigQwpdjn70gc0/Nydaqag7xZmWFO6HLKjAVMs5Hpp+KlXkj4EBLeQeS/kG4JqAD\nBhz8Szg9RyxafZAxRhiJJETSLWUvEwWLtzdsxPntO6jAoFRLUkr+cfaTTHh2Mnu3pJO+/QCTXv6O\nu894FNM08ecHeHzk8/jzAvhy/ATyA4QCIT5/djJr/oj9t+Z0O6nfzD5ja+vuLWy3V0cqOMSb3gz7\ntn8BxGqrl4ABwT+QWddjBZdD7quE5zr4wk1T1j5k1g1IaT+qQugNwHUaUDzpmAuSX0eII2s6BwyD\nb9ev5dFZM3hv6WKyfGXI4aQo1cyK2WtIW7Y1Ym3oUCDE7rS9zP16Ac9c+Sq+nOhBIEF/iOnjf415\nXSEEt710XVSCP7fXxc3PXxO38lc21awUZ0I4kbX+AYee5siwVj3cl+DsBcFfSzjbAHMH5L2JbbOU\nzIfgInD3s7938svI7PvDy4gKB+CAWg+iuY+kIDgU8HPJxM/Yl5dLfiiEx+HgtQXz+XzkZXRtYDdM\nVlGqp/UL0wgFomvTvlw/79z/ccwFe6QlS03vPXDUqXhrefnosYnsSttL6+4tuOGpK2pUao0KBQch\nRAowEWgFbAUuk1JG/caFENcBDxe8fEpKOV4IkQB8CbQlPLV4qpTygYqUp6rQEi5D6k2Ref8Fc3d4\nAlviX5D+aRD8g/DqcLEIMPdjm6MJATL2HAShJSHqvom0ssLNW3rzqH6Kfy/4nV05hwia4RrI4Wyq\n9/z8I9Ouvr5c71NRKksoGGLN/A1IKek6oKPtTOoGLerj8jjxFZvD4PQ4ydxzMObcBneCi9bdW5CX\nnUdincSYZeh9dk962wx1DQZCzJv8JxsWb6JZ+8acecXphWtYVycVWkNaCPE8kCmlfFYI8QBQV0r5\nj2LHpACLgN6E208WA6cQnrnVT0o5S4SXKZsBPCOl/LG0+1b1NaRjkVY2cv/Z4dFMtl/+AG6odSfk\nvm6zopwDUueilTWBn43T3v8ve3Ojc0C5dJ05N9xMakLsPwZFqQqWzFjJk5e+hFWQ2kUIwSNf3MMp\nwyK/qIP+IFe1+gvZ+3Mi5h+4vS4QImq00WFCE3gS3Zghk9H3XcT1T1xe5hn/hzJyGHfqg2Tty8aX\n68eT6MblcfLavKdp1uHYZ1AuzfFcQ3oEML7g5/HAxTbHnANMl1JmFtQqpgPnSinzpZSzAKSUQWAJ\n0KyC5anShFYHUe8rcA8B3IT7IYp+6DzgOQeRcB3obYkemiog750KlcGh2f+XSwkOu9QcilKFHMrI\n4bGLnyP3YF7hwkB52fk8fskLHNyfHXGsy+PilTlP0b5Xa5xuB063g1bdWnDnmzdjGrGzHktL4svx\nE/SH+PqV75jx6Zwyl++9hz4jffsBfAWpvv15AXIy83jxxjeP7g1Xoop+GzSUUu4BKPi3gc0xTYGi\n6+3tLNhWSAiRDFxIuPZgSwhxixBikRBi0f79+ytY7MojHM3Q6r6J1mglInUeeMeAlgp6S6h1b3iF\nOOGChMuB4lXlEOR/gjT3HvX9L+/SHY8jsjVRF4IeDRuqFNtKlTf7y99tZ/BbUvLrxPlR25u1b8wb\nC5/j021v88mWN3l3xUsMu3ZQme/nzwvwxYvflvn4OV/9gVGsuUpKybo/0/DlldScXPWU2ucghPgF\naGSz659lvIddfazwv1eEM8J9DvxbShlz8WEp5TvAOxBuVirjvas0oddH1HkCeCJ6Z2Aetp3SwgnB\nxeAdflT3HNurNwt2/U2fNR0AABOZSURBVH979x4nVV3/cfz1mZmd2V1uu8BySeRmmmEPEl3BvLEm\nLFoZeUszY0uttHr0s/L388KvNPxpqPnQUktJJUzE1FIJSgQUMkOuCiIhIBdFuSwsAnvfmfn8/jgH\nmN2Z2Z3Zua5+no/HPGbOmXN572GYz5zb97udlTs+JKyKz+OhZyDAfRM6tzxjsql2Xx3B5uiTzMGm\nFmr3xb/htLTfkabrRYQ+nypl19bEfmTur45/nq8tjzf+722Pp2s1RtlhcVDVcfHeE5FdIjJQVXeI\nyEBgd4zJtgMVEcODgEURw9OAjaqafNvSH2fefjiXxMbY/fV0/pxDwOfj8QsuZvWunazeuYOjevZk\n7JBhcQ83GZNPTho/kpm3/4VQsPX5An+RP247SLFUVlXw5zufb3WZaywer4dRSXQaNO6KM5n9u5da\nXSXl8Xo48ewTCBQF2pkz/6T6jTAbqHJfVwGx9r/mAZUiUioipUClOw4R+T+gF3Bdijk+dqT4MqIP\nKwlID/CPTnn5n+8/gEmfH8U5w46xwmC6jM+UH8PpF4ymsNuRL9rCbgFO/crJHD868a5Av/7fExk+\ncghF3QsPLyNQ7MdfWHC4y1JfgZfinkV8e8qlCS+36peXMnzkYIq6F1Lg91HUo5C+g3pz/WM/SHgZ\n+SLVq5X6AE8Dg4H3gEtUtUZEyoFrVPVqd7orgZvd2W5X1ekiMgjnXMR6jrQ5/YCqPtLRervq1UrJ\nCje8CAfczaYh8A5ASh9GfENzmitSUzDIrrpayoq7UVSQnY5ZzCdbOBzmteeW8dKMRagqlVUVnHHh\nGDxJ/sgJh8OsfGk165duouzoPoz9+hfYtm47T989mw/f3cnIs0ZwyfVfpSzO3dCHbHlrG2+9up7S\nASWM+fJJFPh9rFm8jnff3MqA4f0Y86WT8PriNYqZXclcrZRScciVT0JxUG2B8B5UuiPBzc5NdL5P\n500nOqrK/cte5+GVyxFxTgh+a+SJ3HD6WdYDnPlECIVC3Pmt+/n37OWoKl6fD3+ggHsW3cqQEUfn\nOl5M2byU1WRAuO5xdPepaPUE2H062jgXfMPzpjAA/GnNmzy8chkNwRbqW1poDAZ5Ys2bPLBsSa6j\nGZMV82csZsnfVtBU30xzg9MY34G9B7jlgruT7tdh59bdvPDgi/zj0YUc2Jv4CfBMsuKQZ7RhDhy8\nx70TutF51D+FHryn88tU5V/vbeO2xa/w26VLeH///o5n6sBDK5bREGzdAmxDMMgjb6z8WHV4YvLD\n4meWcPXnfsLEkklcd+bPefvf7+Q6EnOmzaexrvWJcVXY88Fetm/4MOHlzLz9L1w14jqm/c+f+N11\n07l88DX867ml6Y6bNCsOeUZrHyCqq1EaoX464frncO4XTFxYlWvmvsA1c19g+upVPLj8dSbM/CNz\nNqzvcN727G2ojzm+rrmZYDje3d/GJG/uH+Zz93ceZNu67dQfaODt19ZzQ+UU1i3JbYEINsdqHh/E\n44n7XlsbV21m1q/+SnNjC80NzYc7D5p6xW+p/aiDvmAyzIpDjmm4Bg1FXAEcjnU1MEAIDtyK7r0I\nDSf+oXn0jZUs3LKZ+hbn0rqWcJjGYJAbFsyjrjm5QhPp+L5lMccP7lVCgTc/Tr6Zri8UCvHYzU9G\nNXXRVN/Mozc9maNUji9efqbTFEcbRd0CDDkhsXMOC2e+GvNyWo/Xw9K5q1LOmAorDjmiwfcJ770E\n3X0GWl1BeOdJhGuuAU97LYg0QHArWj+jnWmOeH//fu567Z+EYxzm8Xo8LP1geyfTw+QzK6LutC70\n+fjF2LM7vUxj2jpYU0tDbew2kDav2ZblNK1N/OEEhn7u6MOXw/oLCygsDjB51k8SvnIq2BIk1i3f\nCu028ZEN1mR3Dqi2oDXfgHA1R24Wr4Xml3HaXIpz8xsATdAwF7p3fN30H1Ytj1kYnAwa1U90MkYf\nNYhZF36d+5b+m//sqeaY0t7815jTGH3Ux7p5LJNl3Uu64S3wxmx6u/+QvjlIdESgKMAdf7+ZhTNf\nZdu67QwY1o/xkyroM7A04WWMveQ05k1/JercRTgY4pTzRqU7clKsOGSJhmud5ru9A6F5qdu3dKwv\n7ibAD77PQnBt7IVFdNzTnjW7d8VcA+6axwxK7XK7zw8YyPSJ8btTNCZVvgIfF/z4PP56399bHVoK\nFPuZdGviN6elWygY4v4fPcL8xxfjLfARDoa4+Prz6T0guV4TP3fG8YyfNJaXZiymuaEZj9eDt8DL\ntfd+u1WTH7lgxSHDVMPowalQP8vpgEeDUDAyfpeeLik6H61vgtAmWheRIqT48oTW/dm+ZazdtTNm\n4+B3jzsXv50bMF3At6dchng8PHffXFqag3Qv6cbVd36T0yaekrNMj978JAue+KdzvsA9Z/DsPXPo\nPaCUr147IeHliAg/fvC7VFZV8Nrzy/AX+Tn7sjMYdOzATEVPPFtXvOywK90EF659CGp/R+sOfgI4\nh43iXNEgRUiPm8F/KlrzTWcvQ8NAGArPQ3pNRRJoXnvzvhrOn/WnVpecFng8VAwdxsNfidW6ujH5\nKxQM0VDbSHHPoqTvhk5rjlCIr5VURR0KAug/pIwntuRv89zJ3ARnew6ZVjed6J7fmnDOKwQ40nJI\nBFUorEQ8pVC2CJpfc3qH849CfMckvOrhpb154oJL+PkrC/jPnmoKfT4uPWEkN5x+Zqf/HGNyxevz\n0r0k951RtTQF4zbY91H1gSynyRwrDpmm8T4sIej2Y6ifAVoDFID4AUVKfuMUBkDEB4HE259va9TA\nTzHn8kkEw2G8Inl1l7UxXVGgyE+/o/uyc2v0ZefHnTw8B4kywy5lzTTf8XHGfwZPj2vx9H8d6bcK\nKbkX6fVrpN8SJIViEDeGx2OFwZg0EBF+dP+Vre5xEI9QWBzg+/dUtTNn12LFIYNUFek5GSjiSJ9H\nAhQiPf738HTi6Y4UViKF5yBivbEZk+/GfPlk7pz/C8rPPZEBw/pxxoVj+O3rd/CZ8sQP++Y7OyGd\nAdqyFj0wBVpWO62pBsZD+CCENoLvOKT7D5GCE3Id0xjzCWMnpHNIg++hNVeAum0PaR00vgiBs/GU\nLchtOGOMSZAdVkozrXsUtO0VSI3Q9DIa2pmTTMYYkywrDukW/A8xm74QPwS3ZD2OMcZ0hhWHdPOd\nQMyjddoMvmFZj2OMMZ1hxSHNpNt33PsVIhVC4TjEOyAnmYwxJllWHNJMfIOR3k9CwcmAF6QHFE9C\net2V62jGGJMwu1opA6RgBNJnVq5jGGNMp9megzHGmChWHIwxxkSx4mCMMSZKSsVBRHqLyHwR2eg+\nx+wfT0Sq3Gk2ikhUy1QiMltE4nR7ZowxJttS3XO4EVioqscCC93hVkSkN3ALMAYYDdwSWURE5EKg\nNsUcXZ62vIM2vtLqLmpVRZvfQBteQFvW5zCdMeaTJtWrlSYCFe7rGcAi4IY200wA5qtqDYCIzAfO\nBWaJSHfgp8D3gKdTzJITqgpN89H6mRCug8IvId2+kXDrqhr+CN33XWjZAOIFbUaLJkL3n8G+KyG0\n9dCEqL8cKf09IoHM/UHGGEPqxaG/qu4AUNUdItIvxjRHAe9HDG93xwHcBtwD1KeYI2f04FRoeAq0\nwRlRuwFtfB76PItE3QwXY/79N0LLOqDlSFfRDXOgZS0ENznjD2lejtY+gPT4Wbr/DGOMaaXDw0oi\nskBE1sZ4TExwHbF6mFERORH4tKo+l9BCRL4nIitEZEV1dXWCq84sDe2A+plHCgMAjRB6Dxrndjx/\nuBaaXqVVAQCgwW2jqe34Jqh/JrXQxhiTgA73HFR1XLz3RGSXiAx09xoGAtH95jl7ChURw4NwDj99\nAThZRLa6OfqJyCJVrSAGVZ0GTAOnP4eOcmdF80qgAGhuPV7r0abFSNEF7c+vDSR/2idGn9PGGJNm\nqZ6Qng0cuvqoCnghxjTzgEoRKXVPRFcC81T196r6KVUdCpwBbIhXGPKWpzT2fhFe8MQ6wtZ2/r7O\nI9b8UhJrBvCnvwtRY4xpK9XiMBUYLyIbgfHuMCJSLiKPALgnom8DlruPKYdOTnd5/lNBuhFdIQqQ\n4ks7nF1EkF53gBQBXndsAKQXlNwL0t0ZBqAIPKVIz6gLwowxJu2sm9AUaXALuu/7EN6F8wUv0PMO\nPEUTkltG3eMQ2gL+U5DiyxFPKRragzY8DcENUHAiUnQR4umRsb/FGPPxlkw3oVYc0kBVIbjR6Rq0\nYERCVykZY0y2WR/SWSYiUHBcrmMYY0zaWNtKxhhjolhxMMYYE8WKgzHGmChWHIwxxkSx4mCMMSaK\nFQdjjDFRrDgYY4yJYsXBGGNMFCsOxhhjolhxMMYYE8WKgzHGmChWHIwxxkSx4mCMMSaKFQdjjDFR\nrDgYY4yJYsXBGGNMFCsOxhhjolhxMMYYE8WKgzHGmChWHIwxxkSx4mCMMSaKFQdjjDFRrDgYY4yJ\nklJxEJHeIjJfRDa6z6Vxpqtyp9koIlUR4/0iMk1ENojIehG5KJU8xhhj0iPVPYcbgYWqeiyw0B1u\nRUR6A7cAY4DRwC0RRWQysFtVjwNGAItTzGOMMSYNUi0OE4EZ7usZwNdiTDMBmK+qNaq6D5gPnOu+\ndyXwKwBVDavqnhTzGGOMSYNUi0N/Vd0B4D73izHNUcD7EcPbgaNEpMQdvk1EVonIMyLSP96KROR7\nIrJCRFZUV1enGNsYY0x7OiwOIrJARNbGeExMcB0SY5wCPmAQ8JqqngQsAX4dbyGqOk1Vy1W1vKys\nLMFVG2OM6QxfRxOo6rh474nILhEZqKo7RGQgsDvGZNuBiojhQcAiYC9QDzznjn8GuCqR0CtXrtwj\nInVAVz0M1RfLnm1dNTdY9lzoqrmh/exDEl1Ih8WhA7OBKmCq+/xCjGnmAXdEnISuBG5SVRWRv+EU\njpeBc4B1iaxUVctEZIWqlqeYPycse/Z11dxg2XOhq+aG9GVP9ZzDVGC8iGwExrvDiEi5iDwCoKo1\nwG3AcvcxxR0HcANwq4isAb4F/CzFPMYYY9IgpT0HVd2L84u/7fgVwNURw48Bj8WYbhtwVioZjDHG\npF9XvkN6Wq4DpMCyZ19XzQ2WPRe6am5IU3ZR1XQsxxhjzMdIV95zMMYYkyF5XRySaLvpRRH5SETm\ntBn/RxHZIiJvuo8Ts5M8LdmHichSd/4/i4g/z3LHay9rkYi8E7HNY90Yme7M57rr3CQisZpwCbjb\ncJO7TYdGvHeTO/4dEZmQ6azpyC0iQ0WkIWIbP5TN3AlmP8u9uTUoIhe3eS/mZydbUsweitjus7OX\n+vD6O8r+UxFZJyJrRGShiAyJeC+57a6qefsA7gJudF/fCNwZZ7pzgPOBOW3G/xG4uItmfxq4zH39\nEHBtvuQGegOb3edS93Wp+94ioDyL29kLvAsMB/zAamBEm2l+ADzkvr4M+LP7eoQ7fQAY5i7H2wVy\nDwXWZmsbdzL7UGAk8Hjk/8H2Pjv5nt19rzbPt/vZQLH7+tqIz0zS2z2v9xxIrO0mVHUhcDBboRLU\n6ewiIsAXgWc7mj8DUm0vK9tGA5tUdbOqNgNP4fwNkSL/pmeBc9xtPBF4SlWbVHULsMldXr7nzrUO\ns6vqVlVdA4TbzJvrz04q2XMtkeyvqGq9O/g6zk3H0Intnu/FIZG2mzpyu7uLda+IBNIbr12pZO8D\nfKSqQXd4O04bVdnQ6fayIoanu7vdP8/Cl1lHWVpN427T/TjbOJF5MyWV3ADDROQNEVksImdmOmy8\nXK5ktlsut3k61l8oThtvr4tItn6wHZJs9quAf3Ry3pTvkE6ZiCwABsR4a3IaFn8TsBNnF2wazk13\nU9KwXCCj2eO1R5UWacjdXr5vquoHItID+AvOzY2PJ58yYYlsq3jTZHQ7dyCV3DuAwaq6V0ROBp4X\nkRNU9UC6Q8aRynbL5TZPx/oHq+qHIjIceFlE3lLVd9OUrSMJZxeRK4ByYGyy8x6S8+Kgqbfd1N6y\nd7gvm0RkOnB9ClFjLT9T2fcAJSLic38xDgI+TDHuYWnIHa+9LFT1A/f5oIg8ibMrnMnisB04uk2W\nttvq0DTbRcQH9AJqEpw3UzqdW52DyE0AqrpSRN4FjgNWZDx161yHJLPd4n52siSlf3NV/dB93iwi\ni4BROOcBsiGh7CIyDueH3lhVbYqYt6LNvIvaW1m+H1Y61HYTxG+7KS73y+3QMfyvAWvTmq59nc7u\n/ud/BTh0pUTSf3sKEsk9D6gUkVL3aqZKYJ6I+ESkL4CIFABfIfPbfDlwrDhXd/lxTty2vYok8m+6\nGHjZ3cazgcvcq4KGAccCyzKcN+XcIlImIl4A9xfssTgnGLMlkezxxPzsZChnLJ3O7mYOuK/7AqeT\nYHtwadJhdhEZBTwMfFVVI3/YJb/dc3XmPcGz831wepjb6D73dseXA49ETPcqUA004FTICe74l4G3\ncL6gngC6d6Hsw3G+qDbhtFgbyLPcV7rZNgHfccd1A1YCa4C3gd+Qhat/gC8BG3B+wU12x01x/4MA\nFLrbcJO7TYdHzDvZne8d4Lwsf747lRu4yN2+q4FVwPnZzJ1g9lPcz3MdTgvMb7f32ekK2YHT3O+T\n1e7zVXmYfQGwC3jTfczu7Ha3O6SNMcZEyffDSsYYY3LAioMxxpgoVhyMMcZEseJgjDEmihUHY4wx\nUaw4GGOMiWLFwRhjTBQrDsYYY6L8PzntX69ARRtCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Aplica PCA para duas dimensões\n", + "df_pca = PCA(n_components=2).fit_transform(df)\n", + "\n", + "#Plota os dados em duas dimensões\n", + "fig,ax = plt.subplots()\n", + "ax.scatter(df_pca[:,0], df_pca[:,1], c=y)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [], + "source": [ + "# KMeans clustering\n", + "km = KMeans(n_clusters=3)\n", + "km.fit(df_pca)\n", + "clusters = km.predict(df_pca)" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4VFX6wPHvuXdqCiUQepeOgCJF\nRARB7IoCKjYsa1tddC1rW+sq/uxl17a6FqygKAo2RFCkKNK7QOg9kISQZOq99/z+mBAymTspZCCF\n83keHzO3nHsmTOa995T3CCkliqIoilKcVtUVUBRFUaofFRwURVGUGCo4KIqiKDFUcFAURVFiqOCg\nKIqixFDBQVEURYmhgoOiKIoSQwUHRVEUJYYKDoqiKEoMR1VX4HA0bNhQtmnTpqqroSiKUqMsWrRo\nn5QyvTzH1sjg0KZNGxYuXFjV1VAURalRhBBbynusalZSFEVRYqjgoCiKosRQwUFRFEWJoYKDoiiK\nEkMFB0VRFCWGCg6KoihKDBUcFEVRlBgqOCiKoigxVHBQFEVRYiQkOAghzhZCrBVCZAgh7rfZ7xZC\nTCzcP18I0abYvh5CiN+EEKuEECuEEJ5E1ElRFEU5fJUODkIIHXgNOAfoClwuhOha4rC/ADlSyvbA\nS8Azhec6gI+AW6SU3YDBQLiydVIURVEqJxFPDn2BDCnlRillCJgADC9xzHBgfOHPk4ChQggBnAks\nl1IuA5BSZkkpzQTUSVEURamERASH5sC2Yq+3F26zPUZKaQC5QAOgIyCFENOEEIuFEPcmoD6KoihK\nJSUiK6uw2SbLeYwDOBXoA/iAGUKIRVLKGTEXEeIm4CaAVq1aVarCiqIoSukS8eSwHWhZ7HULYGe8\nYwr7GeoC2YXbZ0kp90kpfcB3QC+7i0gp35JS9pZS9k5PL1c6ckVRFOUwJSI4LAA6CCHaCiFcwGhg\nSoljpgDXFP48CpgppZTANKCHECKpMGgMAlYnoE6KoihKJVS6WUlKaQgh/kbki14H3pVSrhJC/AtY\nKKWcArwDfCiEyCDyxDC68NwcIcSLRAKMBL6TUn5b2TopiqIolSMiN/A1S+/evaVaCU5RFKViCvt0\ne5fnWDVDWlEURYmhgoOiKIoSQwUHRVEUJYYKDoqiKEoMFRwURVGUGCo4KIqiKDFUcFAURVFiqOCg\nKIqixFDBQVEURYmhgoNSLnnBIL6wWodJUY4ViUjZrdRi67L2ce/0H1i9by8A/Zq34Plh59A4JaWK\na6YoypGknhyUuHIDAS6dNIEVmXswLAvDsvh9+zYunTQB07KqunqKohxBKjgocU3+czUh04xaucmU\nkmy/j9lbt1RZvRRFOfJUcFDi2piTTcAwYrYblmTbgdwqqJGiKEeLCg5KXCc0aUqS0xmzXdcEXdVq\nfEoCFeQW8MvEufw8YS55OflVXR0F1SGtlOK8Dp14Zf5vhM08woV9DG5dp2t6I3o1aVbFtVNqi9lf\n/M4zY/6D5tBAgmla3P2/Wxhy+cCqrtoxTT05KHG5HQ4mX3YFo7oeT32Ph/SkJK4/8SQ+uGgkQoiq\nrp5SC+Ts2c/TY/5D0B/CnxfAnx8g5A/xwg1vsnd7VlVX75imnhyUUqV5kxg3ZBjjhgyr6qootdCv\nk37H7jZDWha/TJzHJXdfcNTrpESoJwdFUapMyB/CNMyY7aZhEfKHqqBGykEqOCiKUmX6ntcLzaHH\nbHe6HfQ7v1cV1Eg5SAUHRVGqTOsuLbjob2fjTnIjhEAI8CS7Oef6IbQ/oW1VV++YpvocFEWpUjc+\nczX9L+zDjI9ng5ScfvmpdB/YpaqrdcxTwUFRlCp3/IDOHD+gc1VXQylGNSspiqIoMVRwUBRFUWIk\nJDgIIc4WQqwVQmQIIe632e8WQkws3D9fCNGmxP5WQoh8IcQ9iaiPYi9oGHywbAkjP/uE0ZMm8vXa\nNVhSln2ioijHnEr3OQghdOA1YBiwHVgghJgipVxd7LC/ADlSyvZCiNHAM8Blxfa/BHxf2boo8ZmW\nxVWTP2fV3syiZHorM/cwZ8tmnjvznCqunaIo1U0inhz6AhlSyo1SyhAwARhe4pjhwPjCnycBQ0Vh\n/gUhxEXARmBVAuqixDFz00bW7NsblWXVZ4T5NmMd67NUmgJFUaIlIjg0B7YVe729cJvtMVJKA8gF\nGgghkoH7gMfLuogQ4iYhxEIhxMK9e/cmoNrHljnbttgv8ylh/o5tsdsVRTmmJSI42KZGKecxjwMv\nSSnLzNErpXxLStlbStk7XaWLrrBGScm4tNiZqLomSPMmVUGNFEWpzhIRHLYDLYu9bgHsjHeMEMIB\n1AWygX7As0KIzcDfgQeFEH9LQJ2UEkZ06YauxcZop6YztG27KqiRoijVWSKCwwKggxCirRDCBYwG\nppQ4ZgpwTeHPo4CZMmKglLKNlLIN8DLwlJTy1QTUSSmhaWoqb543nHoeD8lOF0lOJ81T6/DxiEtw\nO9RcSEVRolX6W0FKaRTe7U8DdOBdKeUqIcS/gIVSyinAO8CHQogMIk8Moyt7XaXiBrZuwx83/JVV\nezNxaRqdG6ardRkURbElZA0c5967d2+5cOHCqq6GoihKjSKEWCSl7F2eY1V7Qg1mScmiXTvI9vvp\n1bQZ6UnJVV0lRVFqCRUcaqitufu5avLn5Pj9CCEImSY3nNibu/sPUE1FiqJUmsqtVANJKblhymR2\n5uVREA6THwoRMk3eW7qIGZs2VHX1FEWpBVRwqIEysrPZkXcgJi+SvzB3kqIoSmWp4FAD5YeC6Jr9\nP11uMHiUa6MoSm2k+hxqoK7pjWLnoAMeXefc9h0Pq0wpJV+v/ZN3ly4iNxBgaNvjuLVPPxomqdnT\ninIsUk8ONZDb4WDckGF4HA70ws5nr8NBizp1ubLHCYdV5tNzfuWfM39kZeYeth3I5eMVS7ng0w/Y\nH/AnsuqKotQQ6smhhrqgU2faN2jAR8uXsic/n9PbtmNE5654nc4Kl7XP5+OD5UsImmbRtrBlsT8Q\n4OMVy7itz8mJrLqiKDWACg41WJeG6YwbMqzS5azK3INL16OCA0DQNJm7basKDopyDFLNSgqNU1Iw\nLCtmuy4ELevUrYIaKYpS1VRwUOjcMJ3j6qfhKDECyqXrXHtCryqqlaIoVUkFBwWA94aPpE+z5rh0\nnSSnkzSvl5fPOo8uDdXaGYpyLFJ9DgoADZKS+HjEpWzKyWZrbi59mjcnyemq6mopilJFVHBQAAga\nBg/9/BNT1/1Z1Lx0R9/+3HhSn3KXke338c26tez1FdC3eQsGtGyNpvI8KUqNpIKDAsDjs2by7bq1\nhEyTUOGopZfnz6Npairnd+xc5vkLd+7g2q+/wLIkAdPgvaWL6dGoCe9fNBKXHrs8qaIo1Zvqc1AI\nGGEm/7magGlEbfcbBq8tmF/m+ZaU3PbdVHzhcFEZvnCYZXt2MXHl8sOulz8c5scN6/lm3Z/k+NVk\nPEU5mtSTg8KBUvIxZRYUlHn+2n17KQiHYrb7DYNJa1Zxdc8TK1ynudu2cMs3XyMQSCSGZfHIoCFc\nfnyPCpelKErFqSeHo0Ra2UhzN9Vx5b2GSckku2I7nwVwUrNmZZ6vxUkCCMRNEFia/FCIm7/5OpKO\nPByiIBwmaJo88evPZGRnVbg8RVEqTgWHI0yamVhZVyEzByL3DkPuG4oMLajqakXRhOCR007H63BE\nbfM6ndzd/9Qyz++Y1oB6Hk/Mdq/DwWXdule4PjM3bcCuGztsmny5ZnWFy1MUpeJUs9IRJKVEZl8N\n5lagMDWFuR2ZcwM0/B6hl31XfrRc2KkLDZKSePWP39l+IJcTmzTjjn79OS6tQZnnCiF487zhXPnl\n55jSImSaODWdU1u1YlSXbhWuiz8cjlmrAsCU0rb5Sqn98nLymfnJHPZs2UvX/h3pf0FvdIca6HAk\nqeBwJIUXgrWHosBwkDSQvgmI1LuqpFrxDGjZmgEtW5d53J78fDbkZNO6bj2a16kDwPGNGjPv+pv4\ncUMG+/wF9G3Wgp5Nmh5WPQa2bmMbHJKcTs48rv1hlanUXBlLNnH36Y9iGiZBXwhvioemxzXm5dlP\n4E3xVnX1ai0VHI4kcxfYN5CAueVo16bSDMvi7h+/5/uMdTg0DUtKTmvdhn+ffR4eh5Nkl4uLu3St\n9HWapdbhb31P5vUF8wmaJpaUJDmcnN6mLae0aJWAd6LUJOOueBnfgUOj1fz5Abav3cnEZ77i2icu\nr8Ka1W4qOFSSlH4IzgYZAvcpCC3t0E5nd5CGzVlecPY7vOuFVyN9n4PMR3jOAvcQhDg6XUd3T/uO\nqevXAhQl6vtl8ybG/TqLJ4ackdBr3dbnZAa0bM2k1asIGGHO69iJwa3bItSkumPK3u1ZZG7ZG7M9\nFAgz45M5KjgcQSo4VIIMzkfuv6XYBgOZej9a8pUACEdbpGcYBGYAB+98nKClIbzDK3w9q+ADyHse\nCAEWMjAdXH2g/psIcWTbX/f6CooCQ3GGZTFpzUoeP31owmdDn9CkKSccZtOUUjtouka8AX66o/Sb\nItMwyViyCd2pc1zPNgQKAjjdThxO9bVXHgn5LQkhzgZeAXTgf1LKp0vsdwMfACcBWcBlUsrNQohh\nwNOAi8g33j+klDMTUacjTVo+5P6bQfqid+Q9g3T1QTgjy3WKus8hnR+B7xOQfnB2A3MrMvMUpN4c\nkXonwlP2mgzSyoa8Z4n8mg7yQWgBBGeA58zEvTkb369fF3dfyDQJmyZuh/qjUxKrQdP6tO7agg1L\nN0cNA3d7XZx9/dC45y2esYJxo18iHApjGhZm2EBK0B06g0efwthXb8CbHDvCTjmk0u0RInLL+hpw\nDtAVuFwIUbLh+S9AjpSyPfAS8Ezh9n3ABVLK7sA1wIeVrc/hklIiw6uQwV8iX8RlCf5CvP4E6Z9c\n9EoIHS35GrT0aYi6T0BwLhjrAT+YGcj9d2P5vynH9X4HYbfKmw8ZmFb2+ZUUMAzbdwuR30K2msGs\nHCH/nHAnddPr4E314HQ58CS76XpKJ0beeZ7t8Vm7cnhk+DMcyMrDnxcg5A9hGhaWaREOhpk1cR7/\nGvX8UX4XNU8ibvX6AhlSyo0AQogJwHCg+ID04cBjhT9PAl4VQggp5ZJix6wCPEIIt5Qy/pTdI0Ca\ne5DZ14O5HYQOMoxMvh6R8vf4bdwyANg975og8+1PyXsWCJTYGoC858B7fumVFF7sg5EGIrn0cxNg\ncJu2vPj73KK8S8VJYMxXn9MtvTHt6qcx+vjuNEpOOeJ1Uo4NLTo05eMtb/D71IXs255Np77t6dq/\nY9y/zZ8++hXLjF286qBQIMzyX9ewc8Numh3X5EhVu8ZLRHBoDmwr9no7ULK3tegYKaUhhMgFGhB5\ncjhoJLDkaAcGAJnzVzA3EvliL9xY8D44u4LnLPuT3APgQOwXJSIp0lFsx9hsv93ajZRhhO2TQbHr\n2QYHFyJpVPzzitlbUMBjs2by08YNCAHD2rXn0UFDaJiUVOa5HRs05KruPXl36eKYfRLYkJPDhpwc\nnJrGmwvnc++A07ik6/G2M68VpaJcbienjepfrmNzducQDoZLPcbpcrB7U6YKDqVIxDAXu2+skrfU\npR4jhOhGpKnp5rgXEeImIcRCIcTCvXtjRy8cLmlsAyODmLkI+JEF4+OeJ/TGkHI74OHQr9EDzt7g\nGmB/kt44TmH1KCtOC+GCus8BzsLr6ZFzUv+OcJadbyhkmoz47BOmb1hP2IpkXp22YT2XfP6p7RKh\ndh467XRSyviyD1sWgcJUFye+9RqP/DyDsGmSWZDPgWDJpyZFSbwTh/bA5S3lRgsIBcO06triKNWo\nZkpEcNgOtCz2ugWwM94xQggHUBfILnzdApgMjJFSboh3ESnlW1LK3lLK3unpCVydTOZFmpLsWLml\nnqql3Iho8BG4TyPSpy4h9DsyazjS2B57QvIdQMlJO15IubXMIZrS3AW59x+sWOF/DoTettTzDpq+\nIYP9AT9GsU49w7LY5ytg5qbIrz3b7+P5ebO54NMP+cuUL/lt29aYci7o2LlcHxpZWP5HK5bS9fVX\nOO39/9Hn7Te45qsvyPL5yjxfUQ7Xzo27CfnjPzm4k1wMufxUGjZLi3uMkpjgsADoIIRoK4RwAaOB\nKSWOmUKkwxlgFDBTSimFEPWAb4EHpJRzE1CXinN0wP7X4CrfCCBRN9JZTAgIRv5vrENmX42U0Xfk\nWtJwqPMgiPqAHjk39Q5E0pgyLyPzX44EMg5+6CUQQB54OOY6dtZnZ1EQjv2D8RsG67OzyfL5OPfj\nD/jfkkWs2pvJz5s3ccPUyXy8YlnU8Xf062/b01IaU8rIiCbL4rftW7l68ufVMgGhUju88ff34+5r\n2DyNqx+5hDvfittIoRSqdJ9DYR/C34BpRNo63pVSrhJC/AtYKKWcArwDfCiEyCDyxDC68PS/Ae2B\nh4UQDxduO1NKmVnZepWXEE5knScK78oj8wfAA3pDRPK1ZZ4vfROAkhPdLJD7IfQHuE+OHCclYKEl\nXYb0XhoZAiu85Z/AFpxDbNMXkacbaw/opc8HaJ+WRrLTGRMgvA4H7dPSeGfJQvYHA1Edzn7D4P/m\nzGJkl654HJHH9PxQCK/Tic8m0JSHYVlsPZDL8j27Dzu9hqLEs3PDLqQV/8bj023/PaxypZSsmb+e\n1fPWkta0PgMu6oPb6z7catYICRmYLqX8DviuxLZHiv0cAC6xOe9J4MlE1KEyNO+5SEcbpO+DSMoL\n12mIpMsQWjlG3Fi7iA0ORG7srX1IGULmvQj+CSD9SEcnRJ1HEa6TKljJemDZ9bVIEGXX88zjOvD0\nnF8JGAZm4V27Q9NokJTE0LbH8crv82xHImlCsDYri56NIx136UnJmOXso4j7VhDsyDuggoOSEFJK\ndm/OxOlyoB+BCW5G2OCxEc+x7JdVGGETp9vBa7e/wwu//Is23VqWXUANpVJ2FxLOrmh1n0ZLG4+W\n8pfyBQZAuAYQ248AYIDzBGTug4UT4HyABONPZPb1yPD6ilUw6Tqb67jAfRpCSy3zdJeuM/myKxnW\nrj1OTcOpaZx1XHsmXXIFDk0jPdl+OGzINPnqz1X8Y/oPfPXnaly6zoWduuApMeHNret49PL9YQZM\ng+MbxemcV5QKWP37Oq4+7jZuPP4uxnQYy2Mjnos7czqtaf3DusbUN39k6c8rCRQEMUIG/rwAB7Ly\neXzkc7W6eVRNaa0s7wVQ8A6YO4j0OQB4wTschAcCPxA9qxkgiCx4C1HvuXJfRnhHIo0M8H0MwhXJ\n5eTsiaj7TNknF0pPTub18y4s+kAX7wS/4cTeLNy5A79x6ClIF4KwafLpyhWETJPvM9bx5qIFTBhx\nKS5dZ9LqlUigjsvNw6edzhOzfybgs8slFc20LIKGTROZolRAzp793H/mE/jzD42C27B0Myn1ksjL\njl7BUOiCf/827rCu88M7Mwn6YlPF792exa6Ne2rtcFgVHCpJCA80mIQseA8C34OWjEi6CjwXQngJ\nCHfkizyKBUb8dBT21xGIOvcjU26C8DrQmyIcZafXjlcWQNAwyAn4aeBNYmDrNtxzykCenzcbh6YR\ntiwMy0IWdiZDZF3oLftz+HD5Up44/QweGjiYvFCINK8XTQhmbNrAN+vWYpXRZS2BSWtW8sCpgw6r\n/ooCMG38L5glbjKkJTHCFg9/difzpixiy+pt9BzcjRufuQpdr3j+MdMw2WOT+A8if0clr1+bqOCQ\nAEJLQaSOhdSxUdulow3YzunTwXn8YV4rraiT+3BZUvLCvDm8v2wxkkjfw9g+J3NDr95c1q07f+7b\nS0EoxF+/mxIzByJomkxd/ydj+/XH7XBE5VO6q/8AZmzaYDsqqqTS1q1WlPLYszmTUCD2s2YZJrn7\n8rn/g7E2Z1XMx+O+IFBgPz+nToNUWnSsPgt2JZrqcziChJYG3ouITJQrvsONSL6hSuoE8J8/fuP9\nZYvxGwYBwyA/FOLl+fOYtGYVSU4nvZo2o029+rYL7gB4HdETjKSU7MnPp57Hy8hyrPzmcTgY1k4t\n2qNUTveBXfGmxCbPMwyTfTuyyN13oNLXmPLaD5iG/QCMf064s1ankFfB4QgTdR6HlFtApAFOcPZG\npH2McERPXpPSQMrDGx5aEZaUvLNkUVTfAkSGrb76x+9Fr1vWrUubuvVi0nB7HQ6u7N6z6PW8bVs5\n7f3/MXj8/+jz9uvM2rKZ0h7eXZrGyS1aMrhN+SbvKUo8A0f2o1HrdJzu6JsVy7T48qVvubL1X/lt\n6sJKXcOXFz+hZKfex1Wq7OpOBYcjTAgdLeVWtMa/ozVZhdbgE4Tz0N21NPdi5dyC3NMduac7VvYY\npBE7MzlRQqYRd45CZkF0J94b5w0nPSmZZKeLJKcTj8PB2e07MqprpElsY042N06dzI68AwQLJ7nt\nyDuA3X2WJgSDWrfhxbPO4+3zL0r42g/KscfpcvLveeO49J4LaNg8reguXlqSgC9I0B9i3OUvlfoF\nX5ZuAzrbbm9/Yttav4a16nNIMBlejsx7DsKrQGuMSLkNESfjqpQGMnt04XKihR1boT+QWZdC+kyE\nVnZCvIpy6w6aJKewMz8vZl+Xhg2jXreuV4/Z193I3K1byPQV0KtJU1rXq8/crVvYHwwwe8tmwiXm\nRhiWhVOL3HPomoYg8rTy9BlnMbxTl4S/H+XYlpTq5donLic3K49v//tTzH5N11jww1IGXVK+pH0l\n3fryddwx4CHCgRBG2ER3aDjdTsa+VnXNwkeLCg4JJMOrkFlXUZSW28xH5v4TaWWjJdukyAjOBiub\n6El0ViQdeOBbSIqZN1hpQggeGjiYu6Z/T6BY05LH4eB+m9FDDk1jUGET0LqsfZzy7n8JhA0kEl84\nbDsuye1w8M+BgwkaBk5dZ1i79uXK/Kooh8s0rLhzDkpL312Wtse34u3lLzDpxamsXZBBux6tGXX3\nhbToUPsncKrgkEAy70Vi12vwQ/4ryKTLY1Nym5tthrkC+JDGxriL61TW2R06kux28fLv89iSu5/O\nDdK5u/8ATmjSlM37c7CkpG29+lGdbVJKrp/yJfvKkTQvbJoMbNWaZql1jtA7iMjIzuLdJYvYkJNN\n72bNubZnr7iT+ZTa7fTRA/j50zkECqJHwZlhk6btGmEaZqnNQFJKVs75ky2rt9OqS3O6D+xS9Plv\n3Dqd2165/ojWvzpSwSGRjNX226UPaWYiHM2jtzs6RlZ3i+mI1sHR7ohU8aCBrdowsFWbotfrsvZx\nxofvsSs/DwHU93j5zznnc2LTyFC95Zl7yA2UnXLb63BwQcfORzww/LZtKzdMnUzItDClxbLdu/lk\nxXKmjL6KlnXrHtFrK1UnHAoz7b1fmPHxrzhdDs698QwGXXoKJ5x+PEOuHMiMj2YTCoTQdQ3TtDDC\nJv844184HDq3/fs6zrgq9um4ILeAf5zxL7av3YllWghdo0WHpjw341FS6h27NxuqQzqR9Hj54U3w\nfRC72dUfNLtx0ib4vyrzclLKhIxwChhhRn8xkU37cwgYBn7DYGd+HmO+mkS2P/Kk4A+H4w7bS09K\nplFSMu3q1ef+Uwfx1NDYbLYh02TK2jXc/9M0Xpk/j515hz/MUErJ/TN+xG8YmIUZaUOWSV4wwHPz\nZh92uUr1Zpom95/1JG/ePZ6Vc/5kycyVvHDDG7x4wxsIIbjzzZt54efHuPyBi2nUOh3doWGZFoH8\nAPn7C3j5lrdZMXtNTLlv3jWezSu24s8PEPSHCOQH2LJqG2/c+f7Rf5PViAoOCSRSxmK/rhHgm4As\n0YQkhFa4wpvNP0N4Rdz8S1KaWHkvIzN7Ifccj7V3GDI467DrPX3jhpiOZYik2p6y9k8ATmjSxHbe\ng9fh4PZ+/fn9hlv4acz1XN3jhJiRSL5wmIsnfsyDM6fz2eqVvLHgD4Z9+B7zbNaLKI/9gQC7bTrU\nLWDOti2HVaZS/S38YSnrF20k6DvUdBQoCPLzhLlsWR1ZjLJTn/acd9Mw9m3PwghFf6aDviCfPfd1\nTLk/T5hLOBQ9tDscMvhlYtWsIlBdqOCQQMJ9Goh4Ha8SrP2xm42NYDf4UzgifRJ2JeU9DQXvgSyI\nlGtuQeaMRYYWlVq/oGHwfcY63l+6mCW7dhZ14GUWFNhmZA0YBrsKv4Q9DifjhgzD43CgF375Jzmd\ndGzQkFFlTHx7b8kiNuZkFw2hDVkmfsPg79O+jTvRrjTeUjJvprpqdxrlY9nC6cuj8igdJJEs++VQ\nk27O7v04XPafkZKpMLJ25RAK2T99m4ZZqxPrlUX1OSSasyeE5sVuF07QbFaecvaE0HxikvPJcKRP\nogRpFYBvAoeS/B0UQOa/ikh7z7Zam/bncNmkCfjDYcKWhS40ejdrxtsXXEzvps1waDrhEqkykp1O\n+jY/1FQ2vFMXujRMZ8LK5ezz+RjS9jjO7dARVxk5a6auX0vQJvj4wmEysrPo2KChzVnxeRxOzjqu\nAz9uzIgKal6Hg2t7nlihspSao37jujjdDsLB6Lt83aFTt+GhzMStujTHDMd+3hxOnROHdi96Pf6x\nz5j4zFcIBLLEuDtNE/Qa1rNWz4Aui3pySDCRcicx6TLwQsodRFZILXF80hWR7K1R/xSeSCpuu8R6\n1t74y5oaG+PWa+z335Dl81EQDhMyTfxGmAU7dzB+6WJ6NG5C/xYt8RbLk+TWHXRs0JDBraNnMnds\n0JBHBg3h3+ecz0Wdu5QZGAA8cY6xpMRdzjTfJY0bMoxeTZvhcThIdblw6TrDO3XhmhN6HVZ5SvU3\n7OpBaDafJV3XOfmCQ+ujeFO8XPXIKDxJh54idYeGN9XLJfdcCMCi6cuY9MIUwsFwzFBXl9dFaoNU\nxr76lyP0TmoG9eSQYMLVE9LGI/OeBeNP0BpB8m1oSRfaH683hAZfIPP+D4LzQHghaTQi5Tb7C+hN\nwPZRV4DDfjbnnvx8NmRnxcxJCBgGE1at4MaT+vDm+cOZsHI5E1Yux5CSizt35ZqeJ6Brlb9/uKJ7\nT9bP+hm/cejxXQAt69Sldb16h1VmqtvNJyMuZWNONjvyDtCpQUMaJZdvDQ6lZkpv0YBHJ93NU1e+\ngmVaSEuSVCeJJ6bcV7Qq28EV8DSRAAAgAElEQVRmoNH3XUyLjs347LmvydmdS69hPbjyoZFF60ZP\nffPHmGGvALpT58Jbz+Kqh0eRXOfYnpsjamKbWu/eveXChZXLmVITSMuHLPgfBL4GBHhHQtL1cODB\nyCS5qL4KD6LBp1GpOYKGwYfLl/LpyuVs3p9jO2GtVd26/HLNkZ3taUnJPT9+zw8Z6xECNKGR7HTy\n6ajLaFvv8BZgUY5dRthg3cIN6E4HHXq1RdM0DmTl8erYd5j95XykZdH7rBO4/fUbadQyusly7/Ys\npr4xjW/f+okDWbGDGpLqeHl00j30OqPH0Xo7R5UQYpGUsne5jlXBoXqS0kRmjQIjg0P9C+7C5UL3\nE9XnIOpCvTfR3CcVO19y5Zefs3TPrqiZ0MW5dZ0be/Xhrv4Djtj7KC4jO4tFu3aSnpTMaa3b4EjA\nU4mimKbJjd3vZteG3RiFfQ2arlEvvQ7jM14tal7KWLKJuwY/ihEMx4xOOsid5GZS5jtRTVK1SUWC\ng2pWqq6Cv4K5ieiO5yBYe2wODiGIHnHx+/ZtLM/cHTcweB1O0rxeuqY3ImSa5eo7qKz2aQ1on9bg\niF9HObYsnr6cfTuyigIDRFJm+PIC/DJxHmdfdzoAL938X/xxkvBpuobT5eCON26stYGhotStWzUl\nw0sL150uz8GBmHkOi3fvJBC2DwzNU+sQtkz2+/3c+9MPnPy/N1m2Z3dlq6woVWLbnzsxgrGf9UBB\ngM2rInNpwqEwGYvjD9hwuZ3c/PwYhl2tVic8SAWHKmRZeVi5/8TKHIKVdQlWcE7RPqE3jXROl4sD\ntOh0FY2SU/DYzAfw6DqZBfkYlkWBESY/FGJ/MMB1X39B2DQJmyaZBfm28x4UpTpq1bUFDnfsZ92b\n4qFd98iIP19eAK2U3EoBX5D//uMDNq08cunyaxoVHKqIZWyHzH7g/xys7RBeBjnXYx14PnKA5zyg\nRKK+uKn4NIQ3ejTUOe072rbpm1LGzGeASLK8h3/+iZPefp1B779Dr7de45Xf59lOAlqXtY/XF8zn\n7cUL2HGg8qttKUpl9DqjO41apUdNfNN0jaQ6XvqddyJPXPoCl7e4Ccvmc19cOGjw5cvfHrF65uXk\n881/p/Pxk1+wcs6aaj/BTnVIVxFr3wgwVtrs0RDpcxF6A2R4DXL/XWBuB2QkGV/yX+DAExwaqWRC\nnWfQvGfHlLRmbya3fjeVPQX5ADROTqFFnTrMtUlb4dJ0EMRMKru9b39u7t23aNvz8+bw7tJFhE0T\nXWgIAY8NGsplx3ePKVNRjpa8nHzeuPN9Zn02D8u06Hf+Sfzt39fz6u3v8sd3SwgHy5eDrPtpXXjx\nl38lvH6r5q3lgXOeRJqSUCCEy+ui5+nH8/iX/ziqiwapDumawFgVZ4cF4T9APwfh7IJI/x5p7gYE\nQm8MgPScA6EFgAGuvog4zU9d0hsxc8z1bM3NBSLDVr9dv5Ylu3fFrAYXsmKbkfyGwX8XLygKDisz\n9/Du0kVFndymjJzz2KwZDGnXjvSkYzeDpVK19u3IZs389Qgh0J0ONizZzOaV2yoUGJwuB/k5Bfyl\n2500aZvOZfdeRI/Tula6bqZp8vjI5/HnHUr9ESgIsuznlUz/8NeiDvPqJiHNSkKIs4UQa4UQGUKI\n+232u4UQEwv3zxdCtCm274HC7WuFEGcloj41Q/xp+bJgItaBp5FGRuRIvUlRYAAQwoVwD0C4B8UN\nDIeOFbSuV4/W9eohhODs9h05oXFTkpyRJitNCDwOR9xlO/cHApiFj+PfrltLyGb0kyYEMzduKP3t\nKsoREvAFuXvwo2xfu5OgP0TQF2T35kweH/k8Dmf57so1XRAOGWxasZWta7bzx3dLuHvwo/xj6GOY\nRuyN05bV23j4wqe5KO0arukwlm/emh63mWjD0s0ECmJzQgUKgkx7d2bF3uxRVOngIITQgdeAc4Cu\nwOVCiJLh9i9AjpSyPfAS8EzhuV2B0UA34Gzg9cLyaj/XwPj7wvPANx65bwSWf2pCL+vQNN6/aCTP\nDTub8zt04rJu3Zk4ajSd4uQ3EsDCnTsOvbAJagIBx3AOGqVqzfvqDwybeQuWtOLOZyjO5XHidLts\n9y39eRX/PP+pqG07N+xmbP8Hmf/tIgr2+9i5YTdv3jWed//5ScUrX43/bBLx5NAXyJBSbpSRnNQT\ngOEljhkOjC/8eRIwVEQyWg0HJkgpg1LKTUBGYXm1nqj3LIjSEs6ZQAAOPISUh79Aeknrs7K4cepk\n/jH9Bxbt2slx9dPolt6IO/udUpRttTgJ3P5DJHvq+R064bJpHzWkxU8bMzjprdcZ8sG7fLJiWbXv\nbFNqh/WLNzLz07kE/bGpMEL+MMef2hl3GfMWLFNixBn2DbBo+nIW/ris6PWnT08m6AtFZbEJ+oJ8\n+fK3FOQWxJzf/sS2eJJL5lsDT7Kbs64bUmrdqlIigkNzYFux19sLt9keI6U0gFygQTnPrZWEVh/R\naA7U+w94LwHdJskeADqEFpdaljQ2Y+X8FWtPL6zMQVj57yJl7MiMbbm5jPjsE37dshlfOMyu/Dxe\n+G0Ol33+KWN/iJ8+uyAcYm3WPro1aszNvfrg1h04NQ23ruPSdTTg582byAn42bw/h3Gzf2Hc7MNf\nX0JRLMsiVEpfgWVZ/N9Vr3DnaY+wcNpSLNNmrZEUD6PuPJ/7PxxLx97HxS3LNAxkaSOZJHz96vdF\nL9f8ts52XWqHy8GOjNj5Qpqm8egX9+BN9eBJcqNpAk+ymxOGdGfY1afFv24VS0SHtN2DUcl/qXjH\nlOfcSAFC3ATcBNCqVauK1K/aEkJDeM4Cz1lYObeBabdQjSx1voM0dyOzRoLMjxwr8yNrVpsbEXWf\njDr2rcULCBrhqF+w3zBYtHtXqfWUUuIQkfuIO04+hQs6dWbGpg04NJ21e/cyee3qqMDiNww+XrGU\n2/r0o763vHM1FAWC/iBv3v0BP77/M+GQQdvurbjjjZvoenJ0+vpZn/3GvK8XRC38U5zL66LN8S3p\nffYJ6LrOqRf349GRzzFv8h8xx0oJyXWSyM+Jves/6EB2ftHPLTo1Y+ua7TH5L42QQXoL+wwA3U7p\nxCdb3mTWZ/PI3ZdHj0Fd6XZKp2qdEjwRTw7bgZbFXrcAdsY7RkTyVtcFsst5LgBSyreklL2llL3T\n09MTUO3qRSSNtg8CIgmcJ8Q9Txa8DzJAdEz1g/8rpBm9sMnS3bswDqO5Jz05mfZph9aiaFc/jRt7\n9eG6E3qxJmuv7bwJl66TkZNV4WvtzDvAC/PmMPb7qXy0fCkFoVDZJym1xpOjX+bH938mFAgjLcnG\nZVu4b9i/2L4u+mvh+3dn2GZVFZqgSZt0xjx6Cc/PfAy9WFqYKx4Ygabbf+WlNalH+15tbfe5PE4G\nXdK/6PXl91+MyxvdVOXyuuh/YW/qN46fZTilXjLn3TSMKx4cwfEDOlfrwACJCQ4LgA5CiLZCCBeR\nDuYpJY6ZAlxT+PMoYKaMNEpPAUYXjmZqC3QAYkP7MUC4B4J3DOAqXE0uGfCA6xQI/kSkNe4QKSXS\n2Ayh3wC7x28NGV4btaV9WlrcUUl2vA4H9dwe3jxvOEIIgobBM3N/5aS3Xqf7G/9m7Pff0CQ5xbbM\nkGnSLKWOTanxLdy5gzM/fJ+3lyzk2/Xr+L85szjro/eL1rFWarfdmzNZPH0ZoUD05zkcDDPpxeiB\nGXbNOgDeZA/3fXg7l917ES5PdCdzh15toxYFOsjlcTL0yoG8Ov//GHTpKVH7nG4nzdo34ZwbhhZt\n69SnPQ9/dheNWjXE4XLg8jg548qB3Pv+3yr0fqu7SjcrSSkNIcTfgGmADrwrpVwlhPgXsFBKOQV4\nB/hQCJFB5IlhdOG5q4QQnwGrAQO4TUp5zOZt0OrcjUy+EumfBPn/BSQEvkYGp0f6JNI+QWjJyPBK\n5P7bwcwiZgW5IgE48ADS+SVCjzxp3XRSX37ckIG/2HBUXQgsWXIdLHBpGuOGDOOc9h1xFy4CdMPU\nySzcuaNoVbfvM9ZRx+3GpWkEik2ec+k6J7doRfM65Q8OUkrumf49vmJrPvgNg7CvgFfm/8bjg4eW\ncrZSG+zcsAen2xkTHEzDYtPKbVHbzhwzmLV/ZMQ8PehOnS79OtiWr2kaD3x8Bw9f+DRm2MQIm3hS\nPDRr1xghBMPrjSFYUOzvSQBI7nn3VrwlOpT7nduLjza9Tl5OPp5kDy53yWwGNV9C5jlIKb+TUnaU\nUh4npRxXuO2RwsCAlDIgpbxEStleStlXSrmx2LnjCs/rJKX8Pt41jhlaYygYTyQba+EHVfrA2IAs\neAdpHUBmjymcNe0nMqopDisLeeDxopddGqbz9gUX07ZefXQR6VAe3qkLjVNScBc+fgsiTwyPDz6D\nizp3LQoMq/dmsnjXzqjlPi0pCRoGg9u0w1O4opsGnNqyFa+ec36F3nZmQQF78vNjthuWxY8bMipU\nllIztercLCYwADicDjr3bR+1beiVA+k5uBue5EjzjsvjxJPk5qEJd5Y649g0LFLTUrAsiaYJjuvZ\nmjOuHsjH476IDgwAMtKPMP6Rz2zLEkJQJy21VgYGUDOkqx3p/wxkrs2eEASmgN6IUgNCFAOCM5FS\nFrVvntKyFTPGXE9BKIRL13HqOrmBAOOXLWHWlk00Sk7m+hNPok+zFlEl/blvr20bqd8w+HHjoS9v\nIQS/79jO5v05dGvUOOb4eNwOPe5oqeLLlyq1V8PmDRh02SnM/vw3gv7IF7UQ4PI6Gfn386KO1R06\nT0y5n+WzVrN4xgrqNkzl9MtPpX6junHL37h8C4+NeJag71AQWLdwI+sWbohZl/ogKSOpL45F6q+u\nuvF9Hn+fBGlmQoXmPdh/4Sa7DrXH1vV4uL1ff27v19/2WIBWde072gREfambUuILhxk3exafjLy0\n3LWs5/HSu1lz/tixHbNYeR6Hgyt79Cx3OUrNds///krz9k34+tUf8OX56TGwC7e8eA2NWsUOQhFC\n0HNwN3oO7mZTUqzPX5hC2KY/oyz10ivWd1ZbqOBQ3cjYppUi7jMQrl5IX5LNWg8HH6XN6G3uwQkZ\nFXFS02a0rluPjOysqNFJ8cY+LSljeKydl846lyu//Jxd+ZHlG01LMrRtO67p2etwqqzUQLpD56qH\nRnHVQ6MSXvbWNTuwrNhPrNAE0mY7gCfJzaX32q//Xtup4HAUSSkh9CvS/x0IB8I7AuE6Kfog9yDw\nbSXSP1+cDqljI8NdHV0gvAo4mK/FA87uYO4EKwfwAV4QdRB1HktI3YUQfDziEh6a+RPTN2ZgSUmT\nlFR25h2wDRD1PLEzQsvSKDmFH6+6lgU7d7AzL48ejRvTrn5a2ScqxzQpJYGCAC6Pq9T+huNP7czG\nZZujVowD0HUNzaXF9Hc4XA5G3n0+595wxhGpd3WnUnYfJVJKZO4/IPhT4V2/ADyQfC1a6p2HjjOz\nkFkXgHWAQyORXFDnSbSkiwCwzCwo+BACP4KmgXcUIumKSPDJ/TsEZ1H0JOEdgajzMJHpJYkRNAyu\n+/pLlu3ZFTXy6SCvw8GdJw/ghl7lygysKIdt4Y/L+M9tb7Nnyz4cTp2zrx/CTc+Pse0k3rs9ixt7\n3IXvgL/oScGd5ObcG4bS77xevPvgJ2xfv5smbdM576ZhnHHVaWxctpk37x7PxuVbqNuwDqPvv4gL\nbz272s9RiKciKbtVcDhCpAxA8Bew9oPrZLD2InNusOkvcCMafotwHJr1La1sZMEHEJwDelNE8vUI\n14mRkUq590XWl0YDrT6i7rjIHAnAKngf8l4iMorpIA8kXYNW5+6EvbfZWzbz1++mxKT9BnBqOld2\n78FDp51eoTkVilJR6xZt4K5Bj0R1MLu8Lk69uC+3vnwdC6ctw+HU6XPOiSSlRiaY7sjYxTsPfsLS\nmStJrZ/MiDvP58K/nmX7Zb924QbuHhxdvjvJzaX/uJAxj5a/P606UcGhisnwCmT2dYAJ0qRooR5j\njc3RHkSd+xBJV5ZZrpV1OYSXEz3pzYNo8AXC2QErcyBYe2JPFEmIRksSdrfz7NzZvLkodq6iLgS3\n9+vP2L7xO7YVJVEeH/U8cyf/EZPkUXfoaLrA4XSAEEjT4uHP76bvOSdWqPwHz32KBT8sidnuSXYz\nKfMd3N7SE/pVRxUJDmqZ0AST0kTm3AzyAMgCIv0CQTDWY//r1sq1VrQ0NhT2M5S8Ww8jfe9HfrRy\n4pzstznv8DVMSiqaF1Gc2+GgRWr8oYSKkkjb/txhm/3XNEzCQQN/fgB/np+AL8i/LnmB/P3xcyfZ\n2bTCLtcZIARZO+P8rdUiKjgkWnh5nKGm8VICS3APK7NYaezEPk+hCcamyI/OOEP69NZEMpskxoWd\nuqCJ2I+OLgRntbefnaooZTFNkyUzVzD3qz84kJ1X5vGd+3WImyupJE0TzPt6QYXqk97SPomeNC3S\nmtavUFk1kQoOCRcm7goeelvADSIZREqkuaf+awgtNt8LFHZim7uQ1n4IfEd0X8JBbnD1A0CkPgh4\ni10/0ukt6jxSmTcUo2FSEu9ceDFpXi/JThdeh4MUp4umqXW49bspzNy0sexCFKWYjcu3cHmLm3ls\nxHM8e+2rXN7iZr54+ZtSzxl9/8W4vdE3PfFGK1mmVTSxrjzy9xewedW22B0CzrtlGJ4y1oioDVRw\nSDAphc0cBAAvIvkGRKO5iLpPIeo+g2j0G8J9qn05wbnIvYOQe89CZp4Cgcn2FxQuRPLVhT/2RDSY\nCO4zQW8JrkGItA/jXqMyTm7Rkvl/uYV3L7yY9ORkDGmxLmsfv27ZzNjvv+Gl3+cm/JpK7WSaJvef\n/SQ5e3LxHfDjO+AnFAjz3kOfljo7uUWHprw850lOGtYDT4qHRq0acuGtZ+FOin1KllJWqM/hp49+\ntV+zwemg15Du5S6nJlPzHBJIhtdBzg1AyQ+VA5w9wXshQjjBc07p5RgbkTm3Yv+kUILnAoR2aC6A\ncHZG1P9Phetelg3ZWfyyZTNeh4Oz23cgzZuErmlkZGext6CAQLEhrX4jzFuLFnB1jxNpmJSU8Loo\ntcvK2X/apt8O+cN8+9Z0up3SKe657Xq05ulpDxe9llJSkOvj10m/ESgIIjSBy+Pk8vsvpnHr8qf6\n37Z2R9QopYM0XWPPln3lLqcmU8EhgWTBm0QS5pUkoN7LkcBQrnI+JH621eJcoDerQA0Pz1OzZ/Hh\n8qVIKdE1wZOzf+HVcy5gSNt2zNy80Xaug1PXWbxrB2cep/oglNL58vy2S5BLKcnLLiVjgA0hBPe8\neytDrzqNWZ/Nxel2MuzqQXTq077sk4vp1Ls9npRZBPIDUds1TaNdz3irNtYuKjgkiJQSgrOJfWoA\nhBth7QK9nLN9zS2UL7mehvAemtovw+vB+BMcrcHRPSFDV+dv38bHK5YSNAsDQOHbG/v9VBbceCvp\nScnoQkTlQ4LI70OtAqeUx/GndsYIxd5geJLdnDaq4sOihRD0GtqdXkMr3vyzYdlmdqzfRbueranb\nIJVwMIxZOKPa5XHSrmfrUp9kahMVHBIl9Gv8vEgyBHoFlsZ2dIDQfGyHn4okIl1FFtR5DqE3QcpQ\npBkq9AcIHaQFjuMg7T2EdnhDS7fl5vLxiqV8s26t7ZOBLjRmb93MVT1O4Ku1azCLHSOIJNI7qekx\nsRy4Ukmp9VO48dmr+d/9HxWtAOdJdtOuR2sGjz6l7AISoOCAj3+e+xQZSzejOzSMsEn3UzvTc3BX\n5k1ZiMOhM+yawYx57NIaOzu6olRwSBDp+5y4d/uuAQgt/vKBRWXIIHL/WAjOIzYweMFzHsJ7HmCA\nqy+icH6EzH+1MJgED2XCM9Yicx9F1H+5wu9lwc7tXPvVlxiWabsEKEQuY1qSrumNeGrIMB7++SeE\nEJiWpElKCu9ceLGaIa2U20V/O4fOfdvz7X+ncyA7n4EjT2bQpf1xuo7OWgmvjn2HdYuiU3evmL2G\nkXedz+Ss949KHaobFRwSRdovdA5OSLoCACs4GwLTQW8HSVehadG/fpn3IgR/w7a/wdUPUfdJhM38\nAnyfEdvXEYbgD1j+aQjP0HLnVpJScu/0afiN0ifNmdLi1FaRtteLOnflnPYdWZG5hxSXi04NGh4z\nd1dK4nTu24HOfY9+H5Vpmsz6bF7Mmg6hQJjv3vqJ65+84qjXqTpQwSFBhPcCZOgPYkYYCQc4T8DK\nPB2sHYe25z+DlTYRzdXj0Db/59h3aBNZK9raC7rdAjrxApMFufciC1pB2qcILaXM97HP7ytKmW3H\npekIIXhm6FnUcR8a6+12OOjdTDUjKTWPaVhF/Qol2Y1YKi4cCpO7L4966XUi6TpqETXPIVE854Lr\npMI+AYjEXTck3wG5D0UHBgBMyBkTvUkGiE+L9CnYcQ0k/j+lH4xNyII3ynoHAHh0B/HSbdVxu7mr\n/wB+GnMdF3TqXK7yFKW6c7mdtO/VLma7pglOOtN+oSnLsnjvkQmMaHAd13YYy6hGf2HSi1Nt03nU\nVCo4JIgQDkT9/yHqvQKeSyOT0LCg4D8QmmZ/kvRhhf889NpVSj4soUOcmdSizgMg6nFowZ+SQuCf\nWp63QarbzamtWuHUoj8aXoeDv/U5mZtO6kPz1GNzZSyl9rrzvzfjTfXidEfu/l0eJ8n1k7n5hTG2\nx3/61Jd88eI3BAqCBP0hCnJ9jH9kItPe//loVvuIUsEhgYTQEO5BkTWgzR1AuDD5XimsA4fOr/NI\nsSePkpzgGmB/Xb0pNPyauGk7gIr8Uz837Gw6pDUgyeEk2enCreuc2a49152gVmRTah9fnp+tf+7g\nqodHcu6NZ9D/gt5c+dBI3lvzCk3bxjbjSin5/IWpBH3RzbkBX5CPn/ziaFX7iKtdjWTVgLT2Q/Bn\nyjeJDfBNxNIaIPR0hKM9NJyGzH0YQgcX7CnM2lr/nVIn0QkrCyncIO0S/Anwjij3e0jzJjH18qtZ\nnrmHHQcO0C29Ea3rlT3aSlGqm1AgxMRnv+bH8b9gmRZDrxzI5Q9cjDclMtJv8YwVPHrRMwhNYJkS\ny7S48p8juOLBkXHLDAfD+PPssxdk76o92VrVk0OiWTmRTujyCk6FrHORmSdjZV8PONDS3oKU+4g8\nCeiAAfv/GknPEY/WEGScEUYiBZFyU/nrROHi7Y2bcG6HjiowKDWSlJL7znyCCU9PZvemTDK37mPS\ni99w52mPYJomAV+Qx0Y8S6AgiD8vQNAXJBwM8+nTk1n9e/y/NafbScMW9hlb23ZvZbu9JlLBIdH0\nFti3/QsgXlu9BAwI/Y7MuRYrtAzyXyYy18EfaZqy9iBzrkNK+1EVQm8ErlOAkknHXFDvVYQ4tKaz\nlCGkfypW7mNY+e8h460DoSg12PJZq8lYujlqbehwMMzOjN3M+XI+T13xMv682EEgoUCY6eN/iVuu\nEIJbXrgmJsGf2+vixmevTlj9q5pqVkowIZzI1PvgwDgODWvVI30Jzl4Q+qWUsw0wt0HB69g2S0kf\nhBaCu5/9teu9iMy9N7KMqHAADkh9AM19KAWBtA4gsy6JrBgnfYAHWfAfSPsI4ex6WO9ZUaqjtQsy\nCAdjn6b9+QHeuvfDuAv2SEuWmd574MiT8aZ6+eDRiezI2E3b7q247snLa1VqjUoFByFEGjARaANs\nBi6VUsb8xoUQ1wAPFb58Uko5XgiRBHwOHEdkavFUKeX9lalPdaElXYrUmyML/gvmzsgEtuS/IgPT\nIPQ7kdXh4hFg7sU2RxMCZPw5CEJLQdR/PfIkYOWA3jKmn0Lmv1rYWX7wwx8ACXL/PYj07yr2RhWl\nioRDYVbPW4eUkm4DOtnOpG7UqiEujxN/iTkMTo+T7F37485tcCe5aNu9FQW5BSTXTY5bh95n9qS3\nzVDXUDDM3Ml/sG7RBlp0aMrpl59atIZ1TVKpNaSFEM8C2VLKp4UQ9wP1pZT3lTgmDVgI9CbSfrII\nOInIzK1+UsqfRWSZshnAU1LK78u6bnVfQzoeaeUi954ZGc1k++UP4IbU2yH/VZsV5RyQPgetvAn8\nbFiZp4G122aPC5H+C0JveNhlK8rRsHjGCp645AWswtQuQgge/uwuThoW/UUdCoS4ss1fyd2bFzX/\nwO11gRAxo40OEprAk+zGDJuMuudCrn38snLP+D+QlcfYkx8gZ08u/vwAnmQ3Lo+TV+aOo0XHI59B\nuSxHcw3p4cD4wp/HAxfZHHMWMF1KmV34VDEdOFtK6ZNS/gwgpQwBi4EWlaxPtSa0uogGX4B7COAm\n0g9R/EPnAc9ZiKRrQD+O2KGpAgreqmQt4j0syshcCkWpxg5k5fHoRc+Qv7+gaGGgglwfj138HPv3\n5kYd6/K4eGn2k3To1Ran24HT7aDN8a24/fUbMY34WY+lJfHnBQgFwnz50jfM+Hh2uev3zoOfkLl1\nH/7CVN+BgiB52QU8f/3rh/eGq1Blg0NjKeUugML/N7I5pjlQfL297YXbiggh6gEXEHl6sCWEuEkI\nsVAIsXDv3r2VrHbVEY4WaPVfR2uyApE+F7yjQUsHvTWk3h1ZIU64IOkyoOSjchh8HyFNuzv/ckoa\nBXhKbNTA2R2h1f51cZWabdbnv9nO4Lek5JeJ82K2t+jQlNcWPMPHW97ko02v8/byFxg2ZlC5rxco\nCPLZ81+X+/jZX/yOUaK5SkrJn39k4C8orTm5+imzz0EI8RPQxGbXP8t5DbvnsaJ/XhHJCPcp8G8p\nZdzFh6WUbwFvQaRZqZzXrtaE3hBR93Hg8didwbnYdkoLJ4QWgfe8w7tm8g3I0AIIL46k9hYOEHUQ\n9V44rPIU5WjKzynACMV2MhvBMPk58Sec1m90KHW9EIIGzeqzZ3P5bjJz98bv5ytJ0+Pfb2tazUpG\nWeaTg5TyDCnl8Tb/fQ3sEUI0BSj8f6ZNEduBlsVetwB2Fnv9FrBeSlnx3NK1md6IuOkwtMPvcxDC\nhZb2XmRt6dT7EHVfRINz7CEAABLKSURBVKTPQFRkvQlFqSK9hvXAYdP57PK64uZBsnPmNYNxecpO\nB67p/9/enYdJUd95HH9/+5wZBpkZ7hW5jMeiD4sygvHEKOARxVvjhVeMRx7XRLMebKKLq8EYH028\nWZVgvKImKoFE5BDWxQPBA5EgIIeiqBwamHu6+7t/VA30THfPdE/1Nfp9PU8/3V1dVf3pounvVNWv\nfj8fB2QwaNAx5x1OMNx6vT6/jxFH7Ue4NJxiqeLk9bDSDGCi+3gikGz/azYwTkQqRaQSGOdOQ0T+\nG+gBXOMxx7eOlJ1N4mElAekOoVHe1x8cjnQ7Dyk5Ku3uvI0ptH2q9+TQU0ZR0m3XD21JtzAH/3Ak\n+45KfyjQM38xgaHDB1FaXrJzHeGyEKGS4M4hSwNBP2W7lXLh5LPSXu/E/zqLocMHUlpeQjAUoLR7\nCb0GVHHdY1emvY5i4bW1Uk/gWWAg8AlwhqpuE5Fq4HJVvdSd72LgJnex21R1mogMwDkXsZJdfU7f\np6qPdPS+XbW1UqZi9S/DdnezaRT8/ZDKh5HA4ILmitcYifBlbQ29y7pRGszPwCzmuy0Wi7HohcW8\nMn0Bqsq4iWM47NTR+HyZ/a0bi8VY+sr7rHxrDb336MmRZ36fDSs28uydM/j84y8YfsQwzrjuJHqn\nuBq6xboPNvDBayup7FfB6BMOJBgKsGzhCj5+bz39hvZh9PEH4g8UR2OPTForeSoOhfJdKA6qzRDb\ngko5ElnrXEQX+F7RDKKjqty7+E0eXvo2Is4JwfOHj+D6Q4+wEeDMd0I0GuWO8+/l9Rlvo6r4AwFC\n4SB3LbiFQcP26HgFBZDPpqwmB2K1j6NfHYxuHg9fHYo2zILA0KIpDAB/XPYeDy9dTH2kmbrmZhoi\nEZ5Y9h73LX6j0NGMyYs50xfyxl+X0FjXRFO90xnf9q3bufmUOzMe1+GL9V/x0v0v8/dH57F9a/on\nwHPJikOR0fqZsOMu90roBudW9wy6o/OtiVQVbVxEbPttxHbch0Y+7XihDjy0ZDH1kdY9wNZHIjzy\n7tJv1YAnpjgsfO4NLt3/Z0youIBrDv8lH77+UaEjMXPqHBpqW19IpwpbPtvKxlWfp1gq0ZO3/ZlL\nhl3D1P/4Iw9cM41zBl7O/73wVrbjZsyKQ5HRmvtIGGqUBqibRqzuBZzrBTNYn8bQb65Cv74S6qZD\n7QPolhOI1c/ylHNrfV3S6bVNTURiqa7+NiZzs/5nDndedD8bVmykbns9Hy5ayfXjJrPijcIWiEhT\nsu7xQXy+lK+1tfqdtTz967/Q1NBMU33TzsGDppz3e2q+6WAsmByz4lBgGtuGRuNaAMeStQYGiML2\nW9Ctp6Gx9L80WjsNGuezq+BEgAb4500ZraetfXv1Tjp9YI8Kgv7iOPlmur5oNMpjNz2V0NVFY10T\nj974VIFSOX5wzuFOVxxtlHYLM2i/9M45zHvytVa9xrbw+X28Nesdzxm9sOJQIBr5lNjWM9CvDkM3\njyH2xYHEtl0OvvZ6EKmHyHq0bno787R+D2ruJGk/TuJPPSZ1GiYdPoaSQOsmsCWBAL868qhOr9OY\ntnZsq6G+JnkfSGuXbchzmtYmXDWewfvvsbM5bKgkSElZmElP/yztllOR5gjJLvlWaLeLj3ywBu4F\noNqMbvsRxDaz62LxGmiaj9Pnkh+no9pkGqF+FpR33G5aax+LW39bMedq604atfsAnj71TO5563X+\nsWUze1ZW8e+jD2HU7t/q7rFMnpVXdMMf9CftervvoMJ2EhkuDXP7325i3pOvsWHFRvoN6cPYC8bQ\ns3/63dAcecYhzJ72asK5i1gkykHHHZDtyBmx4pAnGqtxuu/294emt9yxpZP9cDcCIQj8K0SWJ1+Z\ntO0bKYXmD1K8h8vjxXT/1q8/0yakHk7RGK8CwQCnXH0cf7nnb60OLYXLQlxwS/oXp2VbNBLl3p8+\nwpzHF+IPBohFopx+3YlU9cts1MT9D9uXsRccySvTF9JU34TP78Mf9HPF3Re26vKjEKw45JhqDN0x\nBeqedvox0ggEh6ce0tMlpSeidY0QXUPrH/hSpOyc9N48uI9bYJIcVtptitPBnzFF7sLJZyM+Hy/c\nM4vmpgjlFd249I5zOWTCQQXL9OhNTzH3if91zhe45wyev2smVf0qOemK8WmvR0S4+v4fM27iGBa9\nuJhQaYijzj6MAXv1z1X09LN1xWaHXekiuFjNQ1DzAK0H+AnjHDZK0aJBSpHuN0HoYHTbuc5ehsaA\nGJQch/SYgkjHxzQ1shbdcgqtWz8FIXQEvqoHO/uRjCmIaCRKfU0DZbuVZnw1dFZzRKOcXDEx4VAQ\nQN9BvXliXfF2z53JRXC255BrtdNIHPmtEee8QphdPYfEUYWScU4X2r0XQNMiZ3S40AFIYM+031oC\nQ6FqOrr9ZoisBEqg7Eyk+y86+2mMKRh/wE95ReqR2fKluTGStIURwDebt+c5Te5Yccg1TfVliUK3\nq51rD3QbEAQJAYpU/G7n2AoiAQin3/98WxIagfR6CdUI4C+qq6yN6YrCpSH67NGLL9YnNjvfe+TQ\nAiTKDWvKmmuBfVNM3wdf9yvw9X0T6fMOUnE30uO3SJ83EA/FIBWRgBUGY7JARPjpvRe3usZBfEJJ\nWZif3DWxnSW7FisOOaSqyG6TgFJ2jXkkQAnS/T93zie+cqRkHFJyNCJdbyByY75rRp8wkjvm/Irq\nY0fQb0gfDjt1NL9/83b2qU7/sG+xsxPSOaDNy9Htk6H5fac31fBYiO2A6GoI7I2UX4UE9yt0TGPM\nd4ydkC4gjXyCbjsP1O17SGuh4WUIH4Wv99zChjPGmDTZYaUs09pHQdu2QGqAxvlo9IuCZDLGmExZ\ncci2yD9I2vWFhCCyLu9xjDGmM6w4ZFtgP5IerdMmCAzJexxjjOkMKw5ZJt0ucq9XiFcCJccg/n4F\nyWSMMZmy4pBlEhiIVD0FwZGAH6Q7lF2A9PhNoaMZY0zarLVSDkhwGNLz6ULHMMaYTrM9B2OMMQms\nOBhjjElgxcEYY0wCT8VBRKpEZI6IrHbvk46PJyIT3XlWi0hCz1QiMkNEUgx7ZowxJt+87jncAMxT\n1b2Aee7zVkSkCrgZGA2MAm6OLyIicipQ4zFHl6fNH6ENr7a6ilpV0aZ30fqX0OaVBUxnjPmu8dpa\naQIwxn08HVgAXN9mnvHAHFXdBiAic4BjgadFpBz4OXAZ8KzHLAWhqtA4B617EmK1UHI80u1Hafeu\nqrFv0K9/DM2rQPygTWjpBCi/Fr6+GKLrW2ZEQ9VI5YOIhHP3gYwxBu/Foa+qbgJQ1U0i0ifJPLsD\nn8Y93+hOA7gVuAuo85ijYHTHFKh/BtQdirNmFdrwIvR8Pq0xmvWfN0DzCqB511DR9TOheTlE1jjT\nWzS9jdbch3S/NtsfwxhjWunwsJKIzBWR5UluE9J8j2QjzKiIjAC+p6ovpLUSkctEZImILNm8eXOa\nb51bGt0EdU/uKgwANED0E2iY1fHysRpofI1WBQCAerePprbTG6HuOW+hjTEmDR3uOajqMaleE5Ev\nRaS/u9fQH0gcN8/ZUxgT93wAzuGn7wMjRWS9m6OPiCxQ1TEkoapTgangjOfQUe68aFoKBIGm1tO1\nDm1ciJSe0v7yWk/mp32SjDltjDFZ5vWE9AygpfXRROClJPPMBsaJSKV7InocMFtVH1TVf1HVwcBh\nwKpUhaFo+SqT7xfhB1+yI2xtl+/l3JItLxXJFoBQ9ocQNcaYtrwWhynAWBFZDYx1nyMi1SLyCIB7\nIvpW4G33Nrnl5HSXFzoYpBuJFSKIlJ3V4eIigvS4HaQU8LtTwyA9oOJukHLnOQCl4KtEdktoEGaM\nMVlnw4R6pJF16Nc/gdiXOD/wArvdjq90fGbrqH0cousgdBBSdg7iq0SjW9D6ZyGyCoIjkNLTEF/3\nnH0WY8y3WybDhFpxyAJVhchqZ2jQ4LC0WikZY0y+2RjSeSYiENy70DGMMSZrrG8lY4wxCaw4GGOM\nSWDFwRhjTAIrDsYYYxJYcTDGGJPAioMxxpgEVhyMMcYksOJgjDEmgRUHY4wxCaw4GGOMSWDFwRhj\nTAIrDsYYYxJYcTDGGJPAioMxxpgEVhyMMcYksOJgjDEmgRUHY4wxCaw4GGOMSWDFwRhjTAIrDsYY\nYxJYcTDGGJPAioMxxpgEVhyMMcYk8FQcRKRKROaIyGr3vjLFfBPdeVaLyMS46SERmSoiq0RkpYic\n5iWPMcaY7PC653ADME9V9wLmuc9bEZEq4GZgNDAKuDmuiEwCvlLVvYFhwEKPeYwxxmSB1+IwAZju\nPp4OnJxknvHAHFXdpqpfA3OAY93XLgZ+DaCqMVXd4jGPMcaYLPBaHPqq6iYA975Pknl2Bz6Ne74R\n2F1EKtznt4rIOyLynIj0TfVGInKZiCwRkSWbN2/2GNsYY0x7OiwOIjJXRJYnuU1I8z0kyTQFAsAA\nYJGqHgi8Afw21UpUdaqqVqtqde/evdN8a2OMMZ0R6GgGVT0m1Wsi8qWI9FfVTSLSH/gqyWwbgTFx\nzwcAC4CtQB3wgjv9OeCSdEIvXbp0i4jUAl31MFQvLHu+ddXcYNkLoavmhvazD0p3JR0Whw7MACYC\nU9z7l5LMMxu4Pe4k9DjgRlVVEfkrTuGYDxwNrEjnTVW1t4gsUdVqj/kLwrLnX1fNDZa9ELpqbshe\ndq/nHKYAY0VkNTDWfY6IVIvIIwCqug24FXjbvU12pwFcD9wiIsuA84FrPeYxxhiTBZ72HFR1K85f\n/G2nLwEujXv+GPBYkvk2AEd4yWCMMSb7uvIV0lMLHcADy55/XTU3WPZC6Kq5IUvZRVWzsR5jjDHf\nIl15z8EYY0yOFHVxyKDvppdF5BsRmdlm+h9EZJ2IvOfeRuQneVayDxGRt9zl/yQioSLLnaq/rAUi\n8lHcNk92YWS2Mx/rvucaEUnWhUvY3YZr3G06OO61G93pH4nI+FxnzUZuERksIvVx2/ihfOZOM/sR\n7sWtERE5vc1rSb87+eIxezRuu8/IX+qd799R9p+LyAoRWSYi80RkUNxrmW13VS3aG/Ab4Ab38Q3A\nHSnmOxo4EZjZZvofgNO7aPZngbPdxw8BVxRLbqAKWOveV7qPK93XFgDVedzOfuBjYCgQAt4HhrWZ\n50rgIffx2cCf3MfD3PnDwBB3Pf4ukHswsDxf27iT2QcDw4HH4/8PtvfdKfbs7ms1Rb7djwLK3MdX\nxH1nMt7uRb3nQHp9N6Gq84Ad+QqVpk5nFxEBfgA839HyOeC1v6x8GwWsUdW1qtoEPIPzGeLFf6bn\ngaPdbTwBeEZVG1V1HbDGXV+x5y60DrOr6npVXQbE2ixb6O+Ol+yFlk72V1W1zn36Js5Fx9CJ7V7s\nxSGdvps6cpu7i3W3iISzG69dXrL3BL5R1Yj7fCNOH1X50On+suKeT3N3u3+Zhx+zjrK0msfdpv/E\n2cbpLJsrXnIDDBGRd0VkoYgcnuuwqXK5Mtluhdzm2Xj/EnH6eHtTRPL1B1uLTLNfAvy9k8t6vkLa\nMxGZC/RL8tKkLKz+RuALnF2wqTgX3U3OwnqBnGZP1R9VVmQhd3v5zlXVz0SkO/BnnIsbH888ZdrS\n2Vap5snpdu6Al9ybgIGqulVERgIvish+qro92yFT8LLdCrnNs/H+A1X1cxEZCswXkQ9U9eMsZetI\n2tlF5DygGjgy02VbFLw4qPe+m9pb9yb3YaOITAOu8xA12fpzlX0LUCEiAfcvxgHA5x7j7pSF3Kn6\ny0JVP3Pvd4jIUzi7wrksDhuBPdpkabutWubZKCIBoAewLc1lc6XTudU5iNwIoKpLReRjYG9gSc5T\nt87VIpPtlvK7kyee/s1V9XP3fq2ILAAOwDkPkA9pZReRY3D+0DtSVRvjlh3TZtkF7b1ZsR9Waum7\nCVL33ZSS++PWcgz/ZGB5VtO1r9PZ3f/8rwItLSUy/uwepJN7NjBORCrd1kzjgNkiEhCRXgAiEgR+\nSO63+dvAXuK07grhnLht24ok/jOdDsx3t/EM4Gy3VdAQYC9gcY7zes4tIr1FxA/g/gW7F84JxnxJ\nJ3sqSb87OcqZTKezu5nD7uNewKGk2R9clnSYXUQOAB4GTlLV+D/sMt/uhTrznubZ+Z44I8ytdu+r\n3OnVwCNx870GbAbqcSrkeHf6fOADnB+oJ4DyLpR9KM4P1RqcHmvDRZb7YjfbGuAid1o3YCmwDPgQ\n+B15aP0DHA+swvkLbpI7bbL7HwSgxN2Ga9xtOjRu2Unuch8Bx+X5+92p3MBp7vZ9H3gHODGfudPM\nfpD7fa7F6YH5w/a+O10hO3CI+3vyvnt/SRFmnwt8Cbzn3mZ0drvbFdLGGGMSFPthJWOMMQVgxcEY\nY0wCKw7GGGMSWHEwxhiTwIqDMcaYBFYcjDHGJLDiYIwxJoEVB2OMMQn+H9WkCAetwSaXAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Plota os dados em duas dimensões após kmeans\n", + "fig,ax = plt.subplots()\n", + "ax.scatter(df_pca[:,0], df_pca[:,1], c=clusters)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "homogeneity = 0.8983263672602775\n", + "completeness = 0.9010648908640206\n" + ] + } + ], + "source": [ + "#Utilizar métricas de avaliação de clusteres (completeness e homogeneity)\n", + "score_homo = metrics.homogeneity_score(y,clusters)\n", + "score_comp = metrics.completeness_score(y,clusters) \n", + "\n", + "print('homogeneity = {0}'.format(score_homo))\n", + "print('completeness = {0}'.format(score_comp))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parte 2" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGr5JREFUeJzt3X2UXPV93/H3Z7V6YCWeLC0E9LRA\nJYEAgaQ7xNinrqntRtiOqH3sGlU4TQNRaYzr1DltwLS4JVGOH3ratDngogIlBEUcgp1EyVFMksaE\ntgaHXT0LIVsgEMtDtTyDBHr89o87i0aj3Z3Z3bt7Z+58XufMmbl3ftz5SpY/987ve+deRQRmZlYs\nbXkXYGZm2XO4m5kVkMPdzKyAHO5mZgXkcDczKyCHu5lZATnczcwKyOFuZlZADnczswJqz+uDZ8yY\nEV1dXXl9vJlZU+rp6Xk1Ijprjcst3Lu6uuju7s7r483MmpKk5+sZ52kZM7MCcribmRWQw93MrIAc\n7mZmBeRwNzMroOYK97VroasL2trS57Vr867IzKwh5XYq5LCtXQurVsGBA+ny88+nywArV+ZXl5lZ\nA2qeI/dbbz0e7P0OHEjXm5nZCZon3PfuHd56M7MW1jzhPmfO8NabmbWwmuEu6V5J+yRtH2LMxyVt\nlrRD0t9mW2LZ6tXQ0XHiuo6OdL2ZmZ2gniP3+4Blg70p6QzgTmB5RFwMfDGb0qqsXAlr1sDcuely\ne3u67GaqmdlJaoZ7RDwGvD7EkH8K/CAi9pbH78uotpOtXAnPPQe//dtw5Ah85jNj9lFmZs0sizn3\n+cCZkh6V1CPplzLY5tCSJH3euHHMP8rMrBllEe7twFLgM8AvAP9e0vyBBkpaJalbUndfX9/IP7E/\n3J98cuTbMDMrsCzCvRf4YUTsj4hXgceAywYaGBFrIiKJiKSzs+a15gc3fTqcdx74evBmZgPKItz/\nFPj7ktoldQA/D+zMYLtDK5V85G5mNoh6ToVcBzwOLJDUK+l6STdKuhEgInYCPwS2An8H3B0Rg542\nmZkkSS9BMJrpHTOzgqp5bZmIWFHHmO8C382konr1z7v39MCyQc/UNDNrSc3zC9VqS5emz56aMTM7\nSfOG+2mnwYIFbqqamQ2gecMd3FQ1MxtEc4d7ksDLL8NLL+VdiZlZQ2n+cAdPzZiZVWnucF+8OL3l\nnqdmzMxO0Nzh3tEBF1/sI3czsyrNHe5wvKkakXclZmYNo/nDPUngtdfSX6uamRlQlHAHT82YmVVo\n/nBftAgmTnRT1cysQvOH++TJacD7yN3M7APNH+6QNlW7u+HYsbwrMTNrCMUI9ySBt9+G3bvzrsTM\nrCEUJ9zBUzNmZmXFCPeLL4YpU9xUNTMrq+dOTPdK2idpyLsrSSpJOirpC9mVV6f29vRSBD5yNzMD\n6jtyvw8Y8lZHkiYA3wYeyaCmkSmVYONGOHIktxLMzBpFzXCPiMeA12sM+yrwfWBfFkWNSJLAgQPw\n9NO5lWBm1ihGPecuaSbwOeC/1zF2laRuSd19Wd/Y2k1VM7MPZNFQ/V3gNyPiaK2BEbEmIpKISDo7\nOzP46AoLFsC0aW6qmpkB7RlsIwEelAQwA/i0pCMR8ScZbLt+bW3pTbN95G5mNvoj94g4LyK6IqIL\neBj4tXEP9n6lEmzeDIcO5fLxZmaNop5TIdcBjwMLJPVKul7SjZJuHPvyhilJ0mDfPuRZm2ZmhVdz\nWiYiVtS7sYj45VFVM1qVTdUlS3ItxcwsT8X4hWq/88+HM890U9XMWl6xwl1Kj97dVDWzFlescIe0\nqbptG7z3Xt6VmJnlpnjhniRw9Chs2ZJ3JWZmuSlmuIOnZsyspRUv3GfNgrPPdlPVzFpa8cLdTVUz\nswKGO6RN1Z074Z138q7EzCwXxQz3JIEI2LQp70rMzHJR3HAHT82YWcsqZriffTbMnu2mqpm1rGKG\nO7ipamYtrbjhXirB7t3wxht5V2JmNu6KG+798+49PfnWYWaWg+KG+9Kl6bOnZsysBdVzs457Je2T\nNOAdMCStlLS1/PixpMuyL3MEPvQhuOACN1XNrCXVc+R+H7BsiPf3AP8gIhYBvwWsyaCubLipamYt\nqma4R8RjwOtDvP/jiOjvWj4BzMqottErlWDvXti3L+9KzMzGVdZz7tcDf5HxNkfOP2YysxaVWbhL\nuoo03H9ziDGrJHVL6u7r68vqowe3ZEl6ITGHu5m1mEzCXdIi4G7gmoh4bbBxEbEmIpKISDo7O7P4\n6KGdeipceKGbqmbWckYd7pLmAD8AvhwRPx19SRnrb6pG5F2Jmdm4qedUyHXA48ACSb2Srpd0o6Qb\ny0NuA6YDd0raLKmx5kBKJXjlFXjxxbwrMTMbN+21BkTEihrv3wDckFlFWatsqs5qnBN5zMzGUnF/\nodrv8sthwgQ3Vc2spRQ/3E85BS65xE1VM2spxQ93cFPVzFpOa4R7qQSvvw579uRdiZnZuGiNcPcv\nVc2sxbRGuF96KUya5HA3s5bRGuE+aRJcdpmbqmbWMloj3CGdmunpgWPH8q7EzGzMtU64l0rwzjvw\n08a7QoKZWdZaJ9zdVDWzFtI64X7RRdDR4XA3s5bQOuHe3g6LF7upamYtoXXCHdKpmU2b4MiRvCsx\nMxtTrRXupRK89x489VTelZiZjanWCnc3Vc2sRdRzs457Je2TtH2Q9yXpv0naLWmrpCXZl5mRefPg\ntNMc7mZWePUcud8HLBvi/auBeeXHKuB7oy9rjLS1wdKlbqqaWeHVDPeIeAx4fYgh1wD3R+oJ4AxJ\n52RVYOaSBLZsgYMH867EzGzMZDHnPhN4oWK5t7yuMZVKcPgwbNuWdyVmZmMmi3DXAOsGvCuGpFWS\nuiV19/X1ZfDRI+Cmqpm1gCzCvReYXbE8C3hpoIERsSYikohIOjs7M/joEejqgunTHe5mVmhZhPt6\n4JfKZ818GHgrIl7OYLtjQ0qP3t1UNbMCq+dUyHXA48ACSb2Srpd0o6Qby0M2AM8Cu4H/AfzamFWb\nlSSBHTvgwIG8KzEzGxPttQZExIoa7wfwlcwqGg+lEhw9Cps3w0c+knc1ZmaZa61fqPZzU9XMCq41\nw33mTDjnHIe7mRVWa4Y7uKlqZoXW2uG+axe8/XbelZiZZa51w71UggjYuDHvSszMMte64e6mqpkV\nWOuGe2cnzJ3rcDezQmrdcAc3Vc2ssBzuzz4Lrw91RWMzs+bT2uFeKqXPPT351mFmlrHWDvelS9Nn\nT82YWcG0drifcUZ6X1U3Vc2sYFo73MFNVTMrJId7kkBvL7zySt6VmJllxuHupqqZFZDDffFiaGvz\n1IyZFUpd4S5pmaRdknZLunmA9+dI+pGkTZK2Svp09qWOkWnT4KKL3FQ1s0Kp5zZ7E4A7gKuBhcAK\nSQurhv074KGIWAxcC9yZdaFjqr+pGpF3JWZmmajnyP0KYHdEPBsRh4AHgWuqxgRwWvn16cBL2ZU4\nDpIE9u1LG6tmZgVQT7jPBF6oWO4tr6v0H4DrJPWS3jD7qwNtSNIqSd2Suvv6+kZQ7hjpb6p6asbM\nCqKecNcA66rnL1YA90XELODTwB9IOmnbEbEmIpKISDo7O4df7Vi57DJob3dT1cwKo55w7wVmVyzP\n4uRpl+uBhwAi4nFgCjAjiwLHxZQpcOmlPnI3s8KoJ9yfBOZJOk/SJNKG6fqqMXuBTwBIuog03Bto\n3qUOSZKGu5uqZlYANcM9Io4ANwGPADtJz4rZIel2ScvLw34D+FVJW4B1wC9HNFlKJgm88UZ6CWAz\nsybXXs+giNhA2iitXHdbxeungI9mW9o4q2yqXnBBvrWYmY2Sf6Ha75JLYPJkN1XNrBAc7v0mToTL\nL3dT1cwKweFeKUnSC4gdPZp3JWZmo+Jwr1Qqwbvvwk9/mnclZmaj4nCvlCTps6dmzKzJOdwrXXgh\nTJ3qpqqZNT2He6UJE2DJEh+5m1nTc7hXSxLYtAkOH867EjOzEXO4VyuV4P334amn8q7EzGzEHO7V\n3FQ1swJwuFe74AI4/XQ3Vc2sqTncq7W1Hb9CpJlZk3K4DyRJYOtWOHgw70rMzEbE4T6QUik9W2br\n1rwrMTMbEYf7QNxUNbMmV1e4S1omaZek3ZJuHmTMP5H0lKQdkv4w2zLH2Zw5MGOGm6pm1rRq3qxD\n0gTgDuBTpPdTfVLS+vINOvrHzANuAT4aEW9IOmusCh4XUjo14yN3M2tS9Ry5XwHsjohnI+IQ8CBw\nTdWYXwXuiIg3ACJiX7Zl5iBJYMcO2L8/70rMzIatnnCfCbxQsdxbXldpPjBf0v+V9ISkZVkVmJtS\nCY4dg82b867EzGzY6gl3DbCu+ubX7cA84OPACuBuSWectCFplaRuSd19fX3DrXV8LV2aPntqxsya\nUD3h3gvMrlieBbw0wJg/jYjDEbEH2EUa9ieIiDURkURE0tnZOdKax8e556YPN1XNrAnVE+5PAvMk\nnSdpEnAtsL5qzJ8AVwFImkE6TfNsloXmwk1VM2tSNcM9Io4ANwGPADuBhyJih6TbJS0vD3sEeE3S\nU8CPgH8TEa+NVdHjJklg1y546628KzEzG5aap0ICRMQGYEPVutsqXgfw9fKjOEql9HnjRrjqqnxr\nMTMbBv9CdShuqppZk3K4D2XGDOjqclPVzJqOw70WN1XNrAk53GtJEtizB159Ne9KzMzq5nCvpb+p\n2tOTbx1mZsPgcK9lyZL02VMzZtZEHO61nH46zJ/vpqqZNRWHez3cVDWzJuNwr0eSwIsvwssv512J\nmVldHO716G+q+ujdzJqEw70el18ObW0OdzNrGg73ekydCgsXuqlqZk3D4V6v/qZqVN+nxMys8Tjc\n65Uk0NcHe/fmXYmZWU0O93q5qWpmTcThXq9Fi2DiRIe7mTWFusJd0jJJuyTtlnTzEOO+ICkkJdmV\n2CAmT4ZLL3VT1cyaQs1wlzQBuAO4GlgIrJC0cIBxpwL/CvhJ1kU2DDdVzaxJ1HPkfgWwOyKejYhD\nwIPANQOM+y3gO8D7GdbXWJIkvZ/q7t15V2JmNqR6wn0m8ELFcm953QckLQZmR8SfD7UhSaskdUvq\n7uvrG3axuXNT1cyaRD3hrgHWfTAvIakN+C/Ab9TaUESsiYgkIpLOzs76q2wUCxfClCkOdzNrePWE\ney8wu2J5FvBSxfKpwCXAo5KeAz4MrC9kU3XixPRSBG6qmlmDqyfcnwTmSTpP0iTgWmB9/5sR8VZE\nzIiIrojoAp4AlkdEMQ9vSyXYuBGOHs27EjOzQdUM94g4AtwEPALsBB6KiB2Sbpe0fKwLbDhJAvv3\nw9NP512Jmdmg2usZFBEbgA1V624bZOzHR19WA6tsql58cb61mJkNwr9QHa7582HaNDdVzayhOdyH\na8KE9KbZbqqaWQNzuI9EqQSbN8Phw3lXYmY2IIf7SCQJHDwI27fnXYmZ2YAc7iPhX6qaWYNzuI/E\n+efDGWc43M2sYTncR0JKp2bcVDWzBuVwH6lSCbZtg/eLexFMM2teDveRShI4cgS2bMm7EjOzkzjc\nR8pNVTNrYA73kZo1C846y+FuZg3J4T5SUnr07qaqmTUgh/toJAns3Anvvpt3JWZmJ3C4j0aSwLFj\nsGlT3pWYmZ3A4T4aSflmU553N7MGU1e4S1omaZek3ZJuHuD9r0t6StJWSf9L0tzsS21AP/dzaWPV\n4W5mDaZmuEuaANwBXA0sBFZIWlg1bBOQRMQi4GHgO1kX2rDcVDWzBlTPkfsVwO6IeDYiDgEPAtdU\nDoiIH0XEgfLiE6Q30W4NSQI/+xm8+WbelZiZfaCecJ8JvFCx3FteN5jrgb8YTVFNpX/evacn3zrM\nzCrUE+4aYF0MOFC6DkiA7w7y/ipJ3ZK6+/r66q+ykbmpamYNqJ5w7wVmVyzPAl6qHiTpk8CtwPKI\nODjQhiJiTUQkEZF0dnaOpN7G86EPpZcAdribWQOpJ9yfBOZJOk/SJOBaYH3lAEmLgbtIg31f9mU2\nODdVzazB1Az3iDgC3AQ8AuwEHoqIHZJul7S8POy7wDTgjyRtlrR+kM0VU5LA889DUaaazKzptdcz\nKCI2ABuq1t1W8fqTGdfVXCrn3a++Ot9azMzwL1SzsWRJeiExz7ubWYNwuGfhz/4MJkyA226Dri5Y\nuzbvisysxTncR2vtWli1Kr0rE6Rz76tWOeDNLFcO99G69VY4cODEdQcOwM03Qwz4cwAzszFXV0PV\nhrB378Dre3vh7LNh0SK47LL0edEiWLgQJk8e3xrNrOU43Edrzpx0KqbamWfC8uWwdSt873vw3nvp\n+gkT4MILTw79c89Nm7JmZhlwuI/W6tXpHHvl1ExHB/ze78HKleny0aOwe3ca9Fu2pM8//jGsW3f8\nv5k+/XjQ94f+woVwyinj++cxs0JQ5DQvnCRJdBfl1MG1a9O597170yP51auPB/tQ3nwTtm07MfS3\nbTu+o2hrgwULTg79WbN8lG/WoiT1RERSc5zDvcEcOwbPPJMGfWXo79lzfMyZZx4P/P7Qv/ji9BtD\ntZHueMysITnci+bttwc+yu+/ObcE8+adOI+/Zw984xsnTxmtWeOAN2tSDvdWcOxYGuDVR/nPPDP0\nfzdtWton6OhIH1OnHn9d/ah+b8qUbKaE/I3CbEQc7q3s3Xdh+3a48srBx0ydmh7Rj+R//6HCv573\nurvhrrvgYMWVoadMgW99C770pfT1lCnpKaPj3VvwTscanMPd0kshDHSa5ty58NxzabAfPJiGfOVj\n//6T1430vf3707OFRmrSpONB3x/61cuDvR7ue3/91/DNbx4/bRXSndFdd8F11438z5CFRt3puK5x\n53C345dGyHvO/fDhE4N//vzBvzHceSe8/36603n//ZNfD/XeQOP6LwsxWhMnpjua6sfkyfWtG+76\nynWPPgrf+U76Z+o3ZQr8zu/A5z8P7e3p7ycGevS/1zYGP0ZvlH9fzVIXZLLTcbhbqhGPYGp9o8jS\nkSNpyNezs/jc5wbfzi23wKFD6ePgweOvKx/DWZ/VTmc4Bgr9oXYItdY/8cSJU2v9OjrgF39x8O2P\n9eOGGwa+t8LZZ8P69cfHtbXV3tZQY4a7w8xop5NpuEtaBvxXYAJwd0R8q+r9ycD9wFLgNeBLEfHc\nUNt0uLewRj2yGs+dzrFj9e8Irrpq8G8699yTTnsdOZI+Vz8GW5/Ff/PYY4P/+ebPH3wbgz2OHcv2\n73g8DGcn8eKLA+/Uh/nvq95wr/kLVUkTgDuAT5HeT/VJSesj4qmKYdcDb0TE35N0LfBt4Et1V2ut\npT/AG+0bxWC/Nl69OvvPams7Pt9fy2CXuJg7F37lV7KvrV5D7Qx37Rr+9iLSgB/uTqH68dnPwiuv\nnLz9s86Ce+89viOpZ2eT5Zj77x/4zz3Y9alGKyKGfABXAo9ULN8C3FI15hHgyvLrduBVyt8KBnss\nXbo0zBrOAw9EzJ0bIaXPDzyQd0VpDR0dEWn8pY+Ojvxrc13DM3fuiTX1P+bOHdZmgO6okdsRUdcl\nf2cCL1Qs95bXDTgm0nuuvgVMH9nuxixHK1emX5GPHUuf8/42AWkNa9akR8RS+pz3FJbrGr7Vq0/+\nFflYfTOkjjl3SV8EfiEibigvfxm4IiK+WjFmR3lMb3n5mfKY16q2tQpYBTBnzpylzw/0lc7MrKjG\n8WyZeq4K2QvMrlieBbw0yJheSe3A6cDr1RuKiDXAGkgbqnV8tplZcaxcOW7fIOqZlnkSmCfpPEmT\ngGuB9VVj1gP/rPz6C8DfRK2vBGZmNmZqHrlHxBFJN5E2TScA90bEDkm3k07srwfuAf5A0m7SI/Zr\nx7JoMzMbWl0364iIDcCGqnW3Vbx+H/hitqWZmdlI+QbZZmYF5HA3Myug3K4tI6kPGOm5kDNIfyjV\naBq1Lmjc2lzX8Liu4SliXXMjorPWoNzCfTQkdddznud4a9S6oHFrc13D47qGp5Xr8rSMmVkBOdzN\nzAqoWcN9Td4FDKJR64LGrc11DY/rGp6Wrasp59zNzGxozXrkbmZmQ2iqcJd0r6R9krbnXUslSbMl\n/UjSTkk7JH0t75oAJE2R9HeStpTr+o9511RJ0gRJmyT9ed619JP0nKRtkjZLaphbhUk6Q9LDkp4u\n/zu7sgFqWlD+e+p/vC3p1/OuC0DSvy7/m98uaZ2kOu6KMvYkfa1c046x/rtqqmkZSR8D3gXuj4hL\n8q6nn6RzgHMiYqOkU4Ee4B/HiXeryqMuAVMj4l1JE4H/A3wtIp7Is65+kr4OJMBpEfHZvOuBNNyB\nJCIa6txoSb8P/O+IuLt8Ab+OiHgz77r6le/Y9iLw8xGR67W8Jc0k/be+MCLek/QQsCEi7su5rkuA\nB4ErgEPAD4F/GRE/G4vPa6oj94h4jAEuJZy3iHg5IjaWX78D7OTkG5qMu/KNW94tL04sPxpiby5p\nFvAZ4O68a2l0kk4DPkZ6gT4i4lAjBXvZJ4Bn8g72Cu3AKeVLkHdw8mXK83AR8EREHCjf1OhvgSHu\nyj46TRXuzUBSF7AY+Em+laTKUx+bgX3AX0VEQ9QF/C7wb4FGuytyAH8pqad8c5lGcD7QB/zP8jTW\n3ZKm5l1UlWuBdXkXARARLwL/CdgLvAy8FRF/mW9VAGwHPiZpuqQO4NOceK+MTDncMyRpGvB94Ncj\n4u286wGIiKMRcTnpTVauKH81zJWkzwL7IqIn71oG8NGIWAJcDXylPBWYt3ZgCfC9iFgM7Aduzrek\n48rTRMuBP8q7FgBJZwLXAOcB5wJTJV2Xb1UQETuBbwN/RTolswU4Mlaf53DPSHlO+/vA2oj4Qd71\nVCt/jX8UWJZzKQAfBZaX57cfBP6hpAfyLSkVES+Vn/cBf0w6P5q3XqC34lvXw6Rh3yiuBjZGxP/L\nu5CyTwJ7IqIvIg4DPwA+knNNAETEPRGxJCI+RjrFPCbz7eBwz0S5cXkPsDMi/nPe9fST1CnpjPLr\nU0j/0T+db1UQEbdExKyI6CL9Ov83EZH7kZWkqeWGOOVpj39E+lU6VxHxCvCCpAXlVZ8Acm3WV1lB\ng0zJlO0FPiypo/z/zU+Q9sFyJ+ms8vMc4POM4d9bXTfraBSS1gEfB2ZI6gW+GRH35FsVkB6JfhnY\nVp7fBvhG+SYneToH+P3ymQxtwEMR0TCnHTags4E/TvOAduAPI+KH+Zb0ga8Ca8tTIM8C/zznegAo\nzx1/CvgXedfSLyJ+IulhYCPptMcmGueXqt+XNB04DHwlIt4Yqw9qqlMhzcysPp6WMTMrIIe7mVkB\nOdzNzArI4W5mVkAOdzOzAnK4m5kVkMPdzKyAHO5mZgX0/wHQeQZ7Ya8QggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Elbows method\n", + "clusters_result = []\n", + "for i in range(9):\n", + " km = KMeans(n_clusters=i+1)\n", + " km.fit(df_pca) \n", + " clusters_result.append(km.inertia_)\n", + " \n", + "# Plotagens\n", + "plt.figure()\n", + "plt.plot(np.arange(1,10),clusters_result,'ro-')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmcjdUfwPHPee4+M2aMMfY1pCiy\nJlJKhH7SQmlDURJKi5SoSPtCe1RaqChRCskSFWWXXWTfl9ln7n7P749njJm5z53FXGZx3q+XV3Of\n5zznOVfjfu9zlu8RUkoURVEUJTutuBugKIqilDwqOCiKoihBVHBQFEVRgqjgoCiKogRRwUFRFEUJ\nooKDoiiKEkQFB0VRFCWICg6KoihKEBUcFEVRlCDm4m7AmahYsaKsU6dOcTdDURSlVFmzZs0JKWV8\nQcqWyuBQp04dVq9eXdzNUBRFKVWEEHsLWlZ1KymKoihBVHBQFEVRgqjgoCiKogRRwUFRFEUJooKD\noiiKEkQFB0VRFCWICg6KoihKEBUcFEVRlCAqOCiKoihBwhIchBBdhBDbhRA7hRBPGZy3CSGmZ55f\nIYSok+1cEyHEX0KIzUKIjUIIezjapCiKopy5IgcHIYQJeB/oCjQC7hBCNMpVrD+QKKWsD4wHXs28\n1gxMBR6UUjYGOgDeorZJURRFKZpwPDm0BnZKKXdJKT3ANKBHrjI9gC8yf54BdBRCCKAzsEFK+Q+A\nlPKklNIfhjYpiqIoRRCO4FAd2J/t9YHMY4ZlpJQ+IBmIAy4EpBBivhBirRDiyTC0R1EURSmicGRl\nFQbHZAHLmIErgVZABrBICLFGSrko6CZCPAA8AFCrVq0iNVhRFEXJWzieHA4ANbO9rgEcClUmc5wh\nBkjIPL5USnlCSpkBzAWaG91ESjlJStlSStkyPr5A6cgVRVGUMxSO4LAKaCCEqCuEsAK9gdm5yswG\n+mb+3BNYLKWUwHygiRAiIjNoXA1sCUObFEVRlCIocreSlNInhBiC/kFvAiZLKTcLIcYCq6WUs4FP\ngSlCiJ3oTwy9M69NFEK8hR5gJDBXSjmnqG1SFEVRikboX+BLl5YtW0q1E5yiKErhZI7ptixIWbVC\nWlEURQmigoOiKIoSRAUHRVEUJYgKDoqiKEoQFRwURVGUICo4KIqiKEFUcFAURVGCqOCgKIqiBFHB\nQVEURQmigoNSIOkpGTjTXcXdDEVRzpFwpOxWyrA9m/fz+r3v898/ewBoenVjhn8+mIrVKhRvwxRF\nOavUk4MSUmpiGo+2H82ONf/h9/rxe/2s/20Tj7Yfjd+vNuxTlLJMBQclpIVTluL1eMmemzHgD5B8\nIoU1v24ovoYpinLWqeCghHTg38O4MzxBx/2+AEd2HyuGFimKcq6o4KCEdFHrBtij7EHHNU1Q77I6\n575BSpklA6lI5xyk82dkILm4m6OggoOSh6tvu4Ly8dGYLaasY1a7hfrN6tLoiguLsWVKWRJwzkce\na4dMGYVMGY08diUB50/F3azzngoOSkhWu5X3VrzM9fdeS3RcOWKrlOeWYTfwyvxRCCGKu3lKGSD9\nJyD5CcAFMl3/gxuSRyL9R4q7eec1tROcoijFRqZPRaa+BuReQ2NFlHsUEdm/OJpVZqmd4BRFKSXc\ngNG0aB9I97lujJKNCg6KohQf29WAyeCEFWwdznFjlOxUcFAUpdgIc32IuBtwACLzjwMieiEsjYq3\ncec5lT5DUZRipUU/ibR3RDpnAxLh6A6WAnWLK2eRCg6KohQ7YW2BsLYo7mYo2ahuJUVRFCWICg6K\noihKkLAEByFEFyHEdiHETiHEUwbnbUKI6ZnnVwgh6uQ6X0sIkSaEeCIc7VGMedxefnx/Hg+3Hclj\nHZ5l8dd/EAgEirtZiqKUQEUecxBCmID3gU7AAWCVEGK2lHJLtmL9gUQpZX0hRG/gVeD2bOfHA/OK\n2hYlNL/fz5PXjWXnul1ZyfR2rNnF6gX/8ORnQ4q5dYqilDTheHJoDeyUUu6SUnqAaUCPXGV6AF9k\n/jwD6Cgy8y8IIW4CdgGbw9AWJYQVP6/lv3/25Miy6kp38/u3f7F3y/5ibJmiKCVROIJDdSD7p8uB\nzGOGZaSUPiAZiBNCRAIjgDH53UQI8YAQYrUQYvXx48fD0Ozzy9qF/+BKM97mc8PSLYbHFUU5f4Uj\nOBhlYMudsClUmTHAeCllWn43kVJOklK2lFK2jI+PP4Nmnt9iq8ZisQX3ImpmjZj46GJokaIoJVk4\ngsMBoGa21zWAQ6HKCCHMQAyQAFwOvCaE2AMMA0YKIVQH+FnQuU8HNFNwmgKzxUyb/6n55Yqi5BSO\n4LAKaCCEqCuEsAK9gdm5yswG+mb+3BNYLHXtpZR1pJR1gAnAS1LK98LQJiWX+BpxPD9zOOUqROEo\n58AeZaNS7XheX/QcVru1uJunKEoJU+TZSlJKX+a3/fnoGbQmSyk3CyHGAqullLOBT4EpQoid6E8M\nvYt6X6XwWnZuyndHPmHnut2YrWYuaFJb7cugKIohtZ+DoijKeaIw+zmo3EqlWCAQYMvy7SQdT6Fx\n24bEVi5f3E1SFKWMUMGhlDq86yjDrxtDyslUhBB43T56Pv4/7n3hDtVVpChKkancSqWQlJJR3V/m\n2L4TOFNdZKQ48bq9zHp7Ln/9pLrbFEUpOhUcSqF9Ww9wdO8JZCDneJEr3c2P7/1STK1SFKUsUcGh\nFEpPcWIyG/+vS0vKdz2hoihKvtSYQylUv1nd4DXogNVh5aqeV5xRnVJKFn/9J99P+JnUhDSu6N6S\nO0beQmylmCK2VlGU0kg9OZRCVpuFYRMHYnNY0Uz6/0JbhI0qdeLpPuj6M6rz4xFTmDBwIjvW7OLI\n7mP89OF8BjUfTkpCajibrihKKaGeHEqpa3q3o3ajGsz+4BdOHkqkdbfmdOpzNfYIW6HrSjyWzA/v\n/YLX5c065vP6SU1M5+eJC7jz6VvC2XRFUUoBFRxKsQua1GbYRwOLXM/Otbuw2sw5ggOAx+lh7YIN\nKjgoynlIdSspVKxeAZ83eEc4zaRRtW6lYmiRoijFTQUHhbqX1qbWRdUxWXJmbbXYzNz8yA3F1CpF\nUYqTCg4KAC/NG8mlV16MxWbBHmkjJj6akV8N44ImtYu7aYqiFAM15qAAUD4+htcXPceBfw9yaNdR\nLr2qEY4Ie3E3S1GUYqKCgwKAx+3l7Qcn8du0ZZgtJiTQ57le9Hr8xgLXkXwihd+mLSPxSBJNrm5E\ns46Xomnq4VRRSiMVHBQA3n94Mku+XY7X7cXr1mctffHct8TXiKPD7e3yvX7Tsm083fVFAv4AHqeH\nme/MpWHLerz8yzNYrJaz3XxFUcJMfa1TcDvdLJyyFI/Tk/N4hpuvX5qZ7/WBQIAXer2JK82VVYcr\nzcW2lTuY+8miM26XK8PNsh9WsmT6MlJOqsV4inIuqScHhbSkjJDnEg4n5nv97o37cKa5go67Mzz8\n+vkSejzUpdBtWrtoI8/f8hoCgUTi9/p56O17ueH+ToWuS1GUwlNPDudI8okUjh84SUnceS+2cgyO\nco6g40IIGrVtmO/1mkkj1Ns6ld6jMDJSnTx/82t6OvJUJ85UFx6Xlw+Gfc7erQcKXZ+iKIWngsNZ\ndvJwIo9f8xy9awyk34VD6VN/CBv/2FrczcpB0zQemtAPW7bUG5omsEXauHfcHfleX6dxTaLjooKO\n2yJsdBvQsdDt+fvnNYbH/V4fC6csLXR9iqIUngoOZ5GUkieueY5Nf27D5/HhcXk5svsYI7u9yLF9\nx4u7eTlce0d7xv44gqYdGlOpVkWu6nUF7698hbqX1Mr3WiEEz88cTmRMBI4oOyaLCXukjRadmtC5\nX4dCt8WV7iYQCH4U8fsCOFOdha5PKf1kIBmZPpVAyqtI169I6SvuJpV5aszhLNr05zZOHkok4M+Z\nmsLn9fPzxAXc9+KdxdQyY807XkrzjpfmW+7EoQT2bztItXpVqFw7HoAGzS/gm/0f8eeslSQdTebS\nqy7motYNzqgdLa9vGvR3BmCPtNH2psvPqE6l9JLeLciEu0H6ABfSGQGmWlDhG4QWWdzNK7NUcDiL\nju07AQbbOfs8Pg7tPHLuG1REfp+fV/u+x+8z/sJsMRHwS1pe35RnvhmGzWHDEeWg0z1XF/k+lWpW\n5K5Rt/LNyzPxuLzIgMQeaePyG5rT7NpLwvBOlNJEJj0KMtsmVjIDfLuR6R8jyg0rvoaVcSo4FJEr\nw83q+evxuLy06NSEmIrRWecatqqH3+sPusYeaaNph8ZndL+d63Yz79NFZKQ6aX9LG9p0b3HOFpq9\n2vddfvtmGUDW+1o1bx0fPf4lj3xwf1jvddczt9L8uib8+sVvuDM8XH1bW1p3bYYQBtFWKbOk/wj4\nDxmccYNzNqjgcNaIkjh7Jj8tW7aUq1evLu5m8M+SzYzu8UqO6ZYD3+jDjdmmbr505wSWz16NO8MN\ngNlqJq5qLB9vfBNHVPAMobz88O5cPnn6K7wuL4GAxB5lo8lVjRj74whMJlP+FRRB4tEkbqtqHAAs\ndgs/p01Vq6GVsJP+Y8jj1wKe4JOm2mjxC0JfK33g2wKYwXyx/sQhrAhx/i7KFEKskVK2LEjZsPxr\nFkJ0EUJsF0LsFEI8ZXDeJoSYnnl+hRCiTubxTkKINUKIjZn/vTYc7TkXnOkuRt/4StB0y0nDp7B7\n076sciOmDOW+F++gRsNqxNeIo1WXy3BE2elV5X4GXPIoy35YWaD7JZ9IYdKTU3FneLIGa11pbjYs\n3cJfs89+oPx9xt8hz/ncPnwGT0iKUlTCVAnM9Qnun7WDo2fI66R7OfJYW2RCX+TJ25FHGyGPtUQe\nbUYgeQQyEHptj6IrcnAQQpiA94GuQCPgDiFEo1zF+gOJUsr6wHjg1czjJ4DuUspLgb7AlKK250xJ\nKdmxdhcr5q4l6XhyvuVXzllrOJ7g9fj49YslWa9NJhO3PHIDn219m2ETB7J2wQb2bN6PO8PN3i0H\nePnut1k87c9877d+8SbM1uCnA1e6mz++D/3BHS7uDLfh+wVAQPLxlLPeBuX8JMpPAK0CiEjACsIB\n1maIyHsNy0v/MWTSIJBJINMBN+DP/OMB51xk0tBz9wZKqXCMObQGdkopdwEIIaYBPYAt2cr0AJ7P\n/HkG8J4QQkgp12UrsxmwCyFsUkp3GNpVYCcOJfD09eM4sucYmsmEz+Ol5+Pd6Te2d8g+bleGG6OV\nXwF/6OmWHz85BXdQigoPn4yYyrW9r8yzjbYIG8Lg01lootDdU2eidbfmfP7s9Ky8S9lJKRnReSwN\nml9AjQur0e3+64irGnvW26ScH4S5DsQvBfdi8B8BSxOwhB5/ks4fQeb1JOsGz0qkbx/CnP9U7fNV\nOLqVqgP7s70+kHnMsIzUJygnA3G5ytwKrDvXgQHguZteY9+2g7jS3WSkZOBxeZk5YQ5/zgrd5dOi\nc1P8PuPpllfe0sbwmgP/HjY8fuLASXzevOdtN+/UBGEK/sdgtVvo2r9gvXEJRxIZe9ubdLXfQTfH\nHYzrPZ7EY/k/JYG+0O3Ghzobn5Swf9shFn/9J1+/NJM+9Ycw6925ONPUmgQlPISwIuxdEJH9ENbm\neU9MCJzAcIwiR4VW8O/Pu8x5LhzBwej/Uu6v1HmWEUI0Ru9qCrkhshDiASHEaiHE6uPHw7eA7PDu\no+zZvD9oXr0r3c2st+eEvK5itQr0GXM7tggrmqa/PZvDyqXtL6ZFpybG19SoYHg8Oq4cJnPeA8pW\nm4URXwzFbDUjTAKTWcNsMdNvbG8atqqf57UAXo+XoVeMZPkPq/B5fHjdPv6cuYJh7Z7B7yvYeMGD\nb/YjIjrvpxSfx4fH6eGDYZ9xc4V7eWfwJ/i8Pk4eTiQtKb1A91GUohC2KwBb3oWkO3MsQwklHMHh\nAFAz2+saQO65Z1llhBBmIAZIyHxdA5gF9JFS/hfqJlLKSVLKllLKlvHx8WFoti49KSPkB3NqQprh\n8VNuH96DN38bQ6uuzbDYzEgpWb9kMw82H86RPceCyvcdc3uOFBUA9ggbd43qme8UzWP7T/DGfe+D\nAOmXBPwSzaxR48Jq+bxD3fIfVpF6Mi1HIPD7/CQeS85KV5F8IoXJz3zNoBZPMqr7y6z/bVNQPdf0\nvhKhFWA6qdTr/+nD+fwv8i7uueAhelUZwNNdxhVoTEdRzpT07kcfZwjFDo7uCFPlc9WkUikcwWEV\n0EAIUVcIYQV6A7NzlZmNPuAM0BNYLKWUQojywBzgaSnlsjC0pdDqXFITzaC7xmIz0+6W/FfjRsVG\nsv63TXjdenoMr8vLno37eOKa5wkEcj6NXHf3VQwa35eYitGYzCaiYiPp+8Lt3DS0a773+eLZ6aQl\nZeBz691PUko8Tg8TBk4Muo+RvVsOhMycunfLAZKOJ/NA0yeY8dZP7Fy3mxVz1jKq+yv8PPHXHOXv\nea5n8HNhPvy+AF63D5/Hx7rfNvFkp7ElMgGhUkakjQt9TqsMUUMR0XmUUYAwBIfMMYQhwHxgK/Ct\nlHKzEGKsEOLUNmKfAnFCiJ3AY8Cp6a5DgPrAaCHE+sw/lYrapsIwW8w8+tHAoO6hClVjuXXYDfle\nP2fSgqBpnIGAJCUhlQ1LT4/JSynx+/3ccH8nvjv6CbMSPuP745Pp+Wj3Ai3sWv3rP4YpJVKT0jlx\nMCHf62tdXB1HVPC2n7YIK7Uurs6Mt34iNSEVr/v02Ic7w83E4VNwO09/C3OmurBH5vPInge/18/h\n/46yfdXOM65DUUIJePeS17cXrdIfaFH3o0+yLDgpJdKzHpk+Gen8GSmDv2iVNWFZIS2lnAvMzXXs\n2Ww/u4BeBteNA4o9hF99W1uqN6jKD+/O5dj+k7Tqchnd7r+OyOiIfK89tu+k4SpogIQjSXg9XiY/\n8w0/f7QAd4abuk1qMfS9AVzS7qJCtbFchUjDvRVkIEBkPuMAAO1ubs3HI6bicXmyBtJNZhPl42O4\nontLvhzzbY7AcIqmCfZs2p81rhFbpTy+Ao5RhKJpGkf3njjj3EuKkp2UEvwHQFhAC/8CNym9yKTB\n4F4B+PTB7JSxUOErhKXs/g6rJa2Z6jeryxOTB/Pagmfp9fiNBQoMAC06NTH8Ju33+ml0xYW82f9D\nZn8wH1e6Cyklu/7Zy1PXj2PP5sLNlOj5aPeg8QqL1UyrLs2IjMk/+ZjFauHdv1+ibY9WmK1mzFYz\nV95yOW8vfxGT2URcFeOpp163j4VTf+f1+95n4dTfsdgsdLyzPTaHNUc5q92CLcJqWEdubpeHC1tc\nUKCyipIX6VmPPH4t8sQNyOOdIPEhIMRTgTizsUqZ8Q24/wacgFdfOyGTkEmDy3T3qAoORXTtnVcS\nX7MiVvvpbyz2SBud+l6NzWHl9xl/B22/6XV7mf7aD4W6z/X3XkP3QZ2x2i1ExkRgdVhpdMWFPPn5\n4ALXUaFKLM9+9wRznV8z1/k1o6Y9SmylGABufSw4+GgmDZ/Xx5yJC/j18yW8/dAkBrcawf2v3U2n\nvh2w2i1YbBZiK8fw+OSHiDDYMMiI3+fH48pnqqGi5EP6TyAT+0HgIOAC3ODbBpQzKK1Bxe/O7EbO\n7zLrz8V/pExPh1WJ94rI5rDx7t8vMXPCHJZ+txxHlIMeg7vQ8a72bPnrX6x2S9DCsYA/wO4N+0LU\naEwIwcDX+9B7xE3s3riP+JpxVK9f9YzafGqMw+P2knIihfKVYmjZuSn3vXQHk0d+g8ms4fP6Cfj8\n+LwBvB69u8mV5ubQziPM/mA+j3xwP4Pe6kt6ipOYiuXQNI0VP69hybRlhnsx5CBh/ue/8cBrfc6o\n/YoCIJ0zDRa7BUB4odw74FkIvv/AcjlEDUc7g/xjUvpCJP4DfYZ+2d1XQgWHMIiMjuCeZ3txz7M5\nh1WqN6iCx2BFsWbSaNDyzLpVYipGc9k1RUtbHQgE+GzUN8x6Zx5Iicli4u7RPen5WHe69u/I7g17\nyUh1MubWN4IG2z0uL79NW8bdo3pitVux2k93JfUb25u/Zq82nBWVW177VitKgfgPYjhlVfoRJCLK\nv1HkW8i0D/WEfUa0WDDVLfI9SirVrXQWlY+PodM9Vwf1xVsdVm4f3qOYWgVfjZvBrHfm4c5w43Z6\nyEhx8uVz3zL/899wRNppdEVDqjeoGvIJIPd4g5SSE4cSiI6LKtDOb9YIK+16tArHW1HOY8LaCjAa\nG/Qh/UeQgfxn8eUrYyp6TiYD5SeU6RTyKjicZQ9/MIDeT91CTHw0ZouZS668iLeWjAlavOb3+fNN\noREOgUCAGW/9nJVC/BRXhpuvX/w+63XVupWp0aBq0II3e6SNGwddn/V63eKN3H3BYPrWH0LPygNY\n9ct6NFPoXyuz1cxlHRrTqmuzML0j5bxl7wzm6kDuiRABSP8ceawD0rW4aPeQoVf1C0vZ3nhK7edQ\nzBKOJDJ+4CRWzVuHlJImVzfisUkPUvWCs7N60+10c2N0H8M1E1a7lTkZX2W9PvTfER7r8BzOFCeB\nQIBAQHJVzzYM/2wwmqZx4N9DPNj8yRyBxmQ2EfAHgmZxCE3QsktTuvS7lnY3tz7r+08o5wcZSEOm\nfwLO7yFwjOA1DnZEpeUILeqM6g8k9AGPQdZjcyO0ioWbVFISFGY/BzXmEGbbV+3k46emsmPNbipW\nj+Xu0b24pnc7w7J+n59hV47m2L4TWWktNizZzMNXjOTLXe/jiAxetFZUVruVitUqcGz/iaBzFzSt\nneN1tXpV+Gr3B6xduIGTh5NodMWFVK9fhbULN5KakMbqX9fj8+R82vH7/JgtJhACzaQhhEAGAjz2\nySA63tk+7O9HOb8JLQpRbhiBQCI4pxkUMIHnD7Dnn4XAsP5yo5AJt4P0AF7ApG8YFP18UZpdKqjg\nEEY71u7i8Wuez/omvS8lgzcHfEjS8WRuHtotqPyqX9aTdDw5R76jQEDiynCzZNoyuvbvGPY2CiF4\n8K2+vNr3XdwZp6eT2iKsPPDaPUHlTWYTrbroXUB7Nu/njpoDcWd4kEhcaW7Ded5Wh5UH3+yLx+XF\nbDHR9qbWWVNmFeXs8BNyZXSe6bvzJiwXQsWfkemTwbsBzBchIvvracTLOBUcwmjyM98E9eW7M9x8\n8ex0uj/YGbMl51/3wR2HDVclu9Ld7N9+8Ky1s/2tbYiIdvDFc99y6L8jXNCkFv1euIOLL2/AwZ2H\nCfgD1LiwWo7BNiklz9zwEolH80+a5/P4aNG5KZVqVjxr7wFg79YDzJwwh33bDnJJu4bc/HA3KoRY\nzKeUbcJ+A9L1E8hcaeKlD2mqCdKHnvPTmJQSvKv1qa/memBpmfX7L0zVEdGjz2bzSyQVHMJo57rd\nhsdd6W5OHkqkcu2cKzTrXFITi9Uc1DVjMmvUbJh7S4zwatGpKS06Nc16vWfzfu67+BGO7z+JEIJy\nceUYNf1RGrW5EIB/V/8XOkutIOtLmy3CxrV3tDvrgWH9b5sY3f0VvB4vfl+A7St3MGfSQt5f9QpV\n66psm2WVlB5kxkxwzQZhQThuA3s3sLYB+43gnI0+vdWE/jThg8S+SMzIcqPRIoJnCcpAKjKhD/h3\ngwyA0MBUByp8idCiz+0bLEHUbKUwqlrXOGeg3+dn1jtzg44363gplWoFf4j6fQEWTFma7/2klGGZ\n4eR2unm8w7Mc+PcwbqcHV4ab4/tP8FTnF0g+oW//6Up3h0zVHVu5PBWqxlKjYTXuf+1uhk0M3pbD\n6/Gy+Js/eXPAh0wZ+63hmEdBSSl56/4PcWW4s/JEed0+0pLSmTzy6zOuVynZpPQjE+6DtJf1b/me\nv5DJI5EpIxFCoMW8gIibApEDQatGVoCQGSBTIOVZpGdVcL2pL4FvR+Z6Bpf+X98OZOqL5/otligq\nOITRPc/1CvkB+vPEBUEL4jRN03d4M7jm39X/hcy/5Pf7+fzZadxUvi/d7HfS98KhrJy3zrBsQSz/\ncXXWKuic9wmw+Gt9f+uLLq9vuO7BHmHjnmd7Mf3gJD7b+jY9HuqCpuX8tXKmuxhy+dNMGDiRXyYv\n5puXZ9G/0TDWLd54Ru1NTUjj+IHgOewyIFmzYMMZ1amUAu7fwbcpV9eRE5xzkD49y6+wNEFE9IbA\nEfQBZHKUlWmfBNfrnEPwznFecAZ/oTufqOAQRq26NAudzlpKw26Z/dsOIQ0+dE1mMwd3GG8rOvGJ\nL5nx1s9kpDqRUnJo5xHG9nqDTcu25dk+j9vLH9//zax35rLl73+zBpMTDidm7RORo7zTw/EDJwE9\nTciwjx7QU5tnrmOwR9qofUlNrs9n4dust+dwYPuhrJXTXrcPV7qbl+96u0B7UeSWV4K/yJiCJUxU\nSh/pWRZitbIEz4rTLwPH9QytRgI5U2FI/zFCbynqK9OJ9fKjxhzC7OLLG7B2YfA3YrPVTPn44P7L\niy6vz4alm/G4cn7L8Xm81LmkZlB5Z5qTORMXBiWuc2d4mDL2O16dbzxwdmDHYR67ajSuDDc+jx+T\nWaNxu4t4YfYIGrdriMliCnp6cETZaXJVo6zXHe9sT72mdZj78QISjybT5n8tuapXGyzWvNMk/zZt\nWdD7A3Cmu9m39SB1Gge/z7zYHDauvLk1y35YmWNA3xZh4+aHg2eFKWWEVhF9wVuuD3NhBpFtIoKp\nHkij7lYzWK/IehVIfQfSJ2G8i7EG1nZlegV0ftSTQ5jdO+6OoOymtggb/V643XA70hsHXY/VYc3R\ntWRzWGnVtZlhYr2Th5MwmY3/t+3fFnqG07jeb5F0LAVnqguv24sr3c2mP7Yy6515NGxVn6bXXJLj\nG7nVYaXOJTVp1fWyHPXUaVyThybcxzPfPErHu9rnGxiAHPmXspP+QI5stoUxbOJAGrVtiM1hJTIm\nQk8lflf7Au2qp5ROwnETxh9ZJrBfe7qcFglRQwBHzjIiChHZHwDpXgbpn6IHmtxTXe0gyiOinwtr\n+0sbtUL6LNjy13Y+HjGV/9bvIa5aBe4e3ZOOd4VeAHZw52E+evxL1i3agD3Cxg0DO3H36J6GH7xu\np5tb4/sHTZkVAlrf0IJxs58KuubEoQT61B+C1+Dbe40Lq/HZtrfx+/zMmbSQuZ8sxO/z0+meq+kx\npAs2x5nv+nbKL5MX8/4jk3Epk2V7AAAgAElEQVSln26zEIJajWrwyca3ilT3gX8PcXTvcepcUou4\nqmoaa1kn3b8jkx4DAvofUQ4R+xHC0lg/n/l5JoRAun7VV0/7T4CtHSLqIYRJ/8IVSBwM7gUGdzBD\nRB9E1JAzXlVdkhVmhbQKDiWYM93Ft6//yKKpfyA0wfX3XsOtj/6PtwZ8yJLpy3OkwLBFWBn/+ws0\naH4626vH7eXH9+Yx9+OFHNhx2HCNUNV6lflyx3tn9X0EAgFe6/c+f3z/N5om0DQNe5SdN5eMoUaD\nM0s7rpy/pPSCd5PenWRujBAaMpCITHkBXPOBAFjbI2LGZAWDrGv9R5AZX0HGdJBJwZWLKET5dxE2\n46wGpZ0KDmWA3+9naJuR7N28P6u/3uqwUq5CFKkJqXicp58ComIjeWH2Uzm2HpVSMrzjGLat2IHb\naTzgZrVb6DW8B/3G3H5230ymvVsPsGX5dipUKU/L6y8z7GZTlMKS0o88cQP493F6fwUNtDhE/EKE\n0LuXpHcLMuEukF5CD0I7EJX/zrqmrFG5lcqAVfPWc2D7oRwDuR6nh5MHg6dw+jy+oIV0/yzZzPbV\n/4UMDPZIG9EVy1GvaR28Hm+Bxg6KqvbFNah9cY2zfh/lPONZBoGj5Nx4JwCBdH06asStAMjkUXlk\nWdUAK0SPKbOBobDUgHQJtXXFvwXaNAf0FB0r5q7NcWzz8u14Mgw2QgEq1Y7H5/GRejKNN+57n9ur\nPcD2VTuL3GZFKRa+XZlPA7llIH3/AvrKanxb8qjEBtFPoUXcdFaaWBqp4FCM0pLTeev+j7in3mCG\nth3J6l//yTpXqWZF7BEFGww2W8xExUbmOBZXrQJWR/AsIavDSsLhBHxeP840FxkpTlIT0ni664v4\nvD58Xh8nDyfi9Rj9Y1OUEshc33hdg4hAWBoCIAPp6CumQ3FCyitI779npYmlkQoOxeTInmP0qtyf\neZ8u4sjuY2z7ewdPdxnHJ0/r+yl0uL0tZmvOXr9Qc66FSeO6u67Kceyqnm2CEv2Bvn+1zxOcpdLn\n9fH2oI+5Nf4++tQfwi0V7+PLMd8aLgLas3k/37w8i+/emM3RvccL/J4V5aywtgVTNSB7gNCnrkpb\nBwKJD8Px9ugznPLiRWZ8ftaaKQPJyIxpyLQPkJ7VJX6BnRqQLiYPtRrBjjW7go4LTTD90MfEVorh\nv3/28NKdb3Nk91GkhFoXVafn4915/+HJWSuLA/4Awz8bzFU9rwiq679/9jC215v6OIXQnyYq14ln\nncEiPYvNDAi82VJ82CJs3PNsT25/8vSj9uRRX/P9+Dn4vX40TSA0wZB3+5+V9OKKUlAykIxMeRFc\n8wA/2K5BRI/WZzC5lxJ6ADoXSyu0uK/yL1fY9nnWIhP7AwGQbhA2sLZBlH8/z2yx4aZmK5UCnU23\nhfzmMGr6Y1zd6/SH/fEDJxGaoGK1CoCexG7j71vxef00ubpRnt1PUkoO7zoKQNULKrP02+W8OeDD\nHGsO8lKuQhQzT3wG6PtVPHrV6Bz7QIA+62nq7g+IrVy+QHUqSrhJ77/IpKHgPwwI0OIgZgwkDqLA\ngQELmC4AfGCuARH3o9laF71t0o883h4CuZNNOhDRzyIyB8zPhcIEh7B0KwkhugghtgshdgohglZh\nCSFsQojpmedXCCHqZDv3dObx7UKI63NfW2blsSp/zscLmDj8S/ZuPQBAfI24rMAAYLFaaH5dE1p3\nbZbvuIQQgmr1qlCtXhWEELS/tQ0XX94gKweUpokc+ZJyS01Iw+/Xu6GWfLvcMA2GZtL466c1ebZD\nUc4WKZ36FFX/bsAFOCFwABKHhM6xFEQDvODfDv7/9KeNxLsJnOyDNEjFIX07CSQOJHC0BYHj1xFI\nnxa6m8i3NUROKCfSOaOA7Tv3ihwchBAm4H2gK9AIuEMI0ShXsf5AopSyPjAeeDXz2kZAb6Ax0AX4\nILO+Mq/l9ZeFPLdu4UZmvT2HwS1HsPibP8J6X5PZxMu/jOLJz4fQ4fZ2dB1wHW8tHWuYxwkAAZv+\n1BP6CSFCxrTzOAWNUtxcC8k5jfWUQOb2nvmxZf4x4P0bmfhAjkPStw95she4l4BM1ddXpL6MTH2z\ncO0u4cLx5NAa2Cml3CWl9ADTgNw7avQAvsj8eQbQUeijqz2AaVJKt5RyN7Azs74y76kvhxJbJfTW\nmX5fALfTw/gHJuIKMSX1TOzdsp/RN77Ka/e+z+bl26h5UTXqN6tL37G3oxnlbJLw0h0TCAQCdLit\nLRaDXEh+n5/ls1dza6X76NfwYX6etKDED7YpZYP0bs7cAc5o2rcbLC0g33ULfoLTe2fjWYZ0/3n6\nnukTM++X/XfcCRlfIAOpwdebG4EwyhbsQDh65tO24hOO4FAdyL7xwIHMY4ZlpP6MlgzEFfDaMik6\nrhzTDkzi2RmP03VAR6rVr2JYTjNpbFm+Pc+6Duw4zLM3vUqP8n25s/aDzHjrJ8NU2Id3H2XoFc+w\nev46XGkuju8/yWejpvHoVc/yYu8JSL/xbI6MNBd7Nu2nfrO63Da8B1a7BbPFhNVuwWKzIDSNlXPW\nkHIilYM7DjPxsS+Y+MSXhf9LUZRMUgb0tQl5nA8kPY48eSe4/yA4eR76VNbIexExr4P50jzu5ifv\nmUwSmT7l9EvPuhD3s4B/b/BhoSHKvwciMjNQafp/bVeAI3hnupIiHMPkRh0Kub82hipTkGv1CoR4\nAHgAoFatWoVpX4mlaRrtb2lD+1va8Pytr3No55GgMlLKoCyv2R0/cJIhrZ8iI0Xf2yEjJYPPn53G\n/u2HeDTXjmzfvTEbj9ND9i/17gx3vsGHgMzKBNvnudu49o4r+Wv2akwWE7s37mXhlN9zbATkynDz\n04fzuXPkLUTHlSvA34Si6KR0IVNeBudMwIs0X4iIHouw5uqGdc0F90LAaVQNYAfzhWC7CiFMCHtn\nAgmDwWOUbE+CKKfvFheyYdn2TjfX1cclcn9USS9oxl/yhLU5xC/V2x1IBGtrsDQv0SnBw/HkcADI\n3mFdAzgUqozQ523FAAkFvBYAKeUkKWVLKWXL+Ph4oyKl2g0PdDLcKMgRZefiNg1CXvf9hJ9xO905\nunHcGR4WfLmUhCOJOcpu/XsHfp/BN558xFYpT61saS9qXFiNXk/cyC2P3MCuf/bi8wbXabFZ2Jc5\noF4Yx/af4LNR3zCu93hmfzAfZ1qof/xKWSSThmUGBjcQAN82ZEJfpC/n/uzSOSPXjnCnCNBqQNQQ\nRIUp5BjCLPcgIRfCafFgyj1UeooN7F1O3yFqIMFjFDawXYswhd47XWjRiIjeiKhBCGuLEh0YIDzB\nYRXQQAhRVwhhRR9gnp2rzGygb+bPPYHFUv80mw30zpzNVBdoAKwMQ5tKnVbXX8ZNQ7tisVlwRNlx\nlLNji7DS/LomLP9xVdCHupSSAzsO88/iTYaL2jSTYPfGfTmO1bq4BlqIbUyN2CL0RH9jZg1HCIHH\n5eGTp6bSs9J93BhzD+N6jyeuRpzhNqdet5f4mqH/oRjZtGwb/RsN47s3ZrP02+V8/OQUBlzyWNY+\n1krZJn0HwL0MPTBk50GmT85VOEQ3kIhAlH8dLeoBhMj5AS7MjUEzSutuA0d3RMXvwZp7PxArmGsj\nHLedrsfSBBH7DmhV0Rfe2cDRA1H+tfzfZCkSlnUOQohuwAT0sDxZSvmiEGIssFpKOVsIYQemAM3Q\nnxh6Syl3ZV77DHAf+nSDYVLKefndryyscwjl+IGT/DJ5MdNemYUMSLweH44oO9XqV2H872NxRDn4\nd81/vHDbWyQeTcbr9uZI3Z1dxeoVeH/VK1Soov+D2LVhLw+3fSbHXhCaSUNKGbRVqcVq5vFPB9H+\n1jZZm/WM6DyWTX9uy5rOqpk0omIicDndObLEWmwWLrv2El6aM7LA71tKSd8GQ7PWZJxitpjo9kAn\nhr7bv8B1KaWTdC/X1ypIg0FdSzO0uOmnyzpnIpPHENStJGIQlf4KubBMuv9CJg5E/7jxARFgrgn2\nGyDtw+D6sELcN2iW4DELKaXe3SQi0L8Xl3znfJ2DlHKulPJCKWU9KeWLmceelVLOzvzZJaXsJaWs\nL6VsfSowZJ57MfO6hgUJDGVdxeoVmPXOXDwub9a2nc40F3u3HuDbN2aTlpTO8I5jOLL7GO4Md8jA\nAJB4NJl3B3+a9fqCJrV5YfYIalxYFZNZH1DueHd74qrFZu3IJoT+xDD0/QF0vOuqrMCwc/1uNi//\nN8c6h4A/gNvlpXXXFnoeJ6Gv8G5+3aWMnv5ood73ycOJnDhkkHHW62f5D+flw+T5x3yBvno4+ARY\nmuY8ZL8RbJdnmwVkA+FAlJ+Qz4pjP2jl0QegNbBcBLYekPYBxuMXXkh927AmIQRCK19qAkNhqZTd\nJcy8TxaRmpAWdNzn9rHoqz+Iq1qBgC+/HDE6v8/PXz/pOVxO9W82u/ZSPtv2Ds40JxabBbPFTGpi\nGj++N4+V89YRV60Ctw67gUuuvDhHXbs37DPsPnJnuFn+4wp9kFvqweGfpVs4uOMI9ZvVLfD7ttot\nQU8vp+Q1IK+UHcJUBWnvBq5f0Bezgf6Nw46I7JezrDBD+YngWYn0/IXQYsH+P4QpLmT90rsNmfhQ\ntrrRNw3ybiL0KmoJ3rUhzpVtKjiUMHM/XRT6pISEw4mFXPdg/IHriDo997tcbBR3j+7F3aN7hayl\nar3KxicEBPyn7xHwB3ClufjoiS94Y9HzBW5ldIVyXNLuIjb+sQW/L+cOd90f7FTgepTSTcS8hDTX\nhoypEEgDaytE9EiEqVpwWSHAdjnCdnmB6pZZe0ZnV4BFclqF/MuUQSorawmTkWy0zF7XtkcrGrVt\niCPKHnROM2lBKTA0k0brbuGZLte4bUOq16uC2ZJrtkeIIautf+0o9D2emvow1epX0Qfko+xY7Rba\n/K8lNw3tdgYtVkojIcxoUYPRKv2FVmUjWoXJCHP98FTu24Xxeoa8/n04IOL+8Ny/lFFPDueQlJJV\nv6xnyfRlmK1mOvftkGNrT4DW3ZpzaNdR/Lmmh5rMGn3G3IY9wka9y+qwY82urF3ebA4rDVvV5+i+\n46ScSMWZ5sLmsBJVIZKHPwjPL7YQgtcWPcvbgz5m+Q8rCQQk8TXiOLrvuGGAKFeh8Juzx1WN5dPN\nE9j05zaO7TvBhS0voGbD82JNpFIE+sBwBghb3uMN1hZ6nqOgVBumzD+5n8gtEHkfIuI2zkcqK+s5\nIqXklT7vsvyHlbjS3QghsDqs3ProDdz7wh1Z5RKPJTPwsidIS0zD69Z/iS12C49OHEine67OKvPj\ne/P4c+YKhCbo2r8j3Qd1RkrJuN4TWDlnbdaitc79rmHIO/eFdb9mj9vDyC4vsm3VfzlmPp1ii7DR\nb+zt9Hyse9juqShGpPtPZMrz4D8IWMDRExH9lOEgsfQf0fealumcfoJwQEQvhO0aPTeSfw9o1SHi\nDoTjRn2dRcrL4NuuT4ONHIiIuKvEr1EIRe0hXQK4nW5WzFlLakIaTa+5hITDiVmBAfRg4c5wM+PN\nn+hy77VUvUDv04+tFMPHG95k1jtzWT1/PZVqxdPzsf/R6IqGpCWl81q/91j1y3o0TRBdMZrHPn6Q\nVplJ/Ga+PYe1Czbg9/mz1kUs+HIpUbGR9H/xzrC9tw1Lt7J9zS7DwGCxmuk2oCO3DLshbPdTFCPS\nuynXALMfnDOQMhminwH3n4BZXyWtRSFMVSBuph4EPH+BFgMR9yIi7tRnHtna5ap/IzLhvtP1B45C\n6utImYiIGnoO32nxUE8OZ8H21f/xVOcX8Pv9BHwBpJTUvKg6/63fE1TW6rAy8PU+3PhQ/tnKh7Uf\nzfZVO/F5Tj8W2yKsvLfiFeo0rknvmgP1jX1ycUTZ+TH5y7B92/n06a+Y9uoPQcdNZhP3PNuTu0aV\n3GRiStkRSBwK7l8J7tc0ow+nmjPTBQcQ5d9B2K4uXP0JA8Dze/AJ4UBUWoG+fKt0OefrHJTT/H4/\no298hbSkdJypLtxODx6Xl72b9xvumWAyaYZpM3Lbt+0gO9fuyhEYALxuH99P+BmAlBMGi4cAV7ob\nn9copfGZia1cPmtdRHYWu4VKtcteahOlhPIZ5DfST6DPQsrQu5CkE5n4MDJQyJX2vlA5xwT4jxWu\nrlJIBYcw275yJ26DXdZ8Xr9hGutAQNLuplb51nt073HDTRMC/gAH/z0MQIPmxusKqjeogsVa0E1P\n8nfNnVeGDHRX3lKwaYWKkpuUfn0Fs2sBMpCU/wXWphT8I0xkJuorhBBJ9JABMJX9L0EqOISZ1+ML\nOTOuZsNqWB1WIso5iIh2YI+08/zM4UTGRBqWl1JybP8JUhJSWfrtcuM+fruFJh0aA/DgW/2wRdiy\nuo9OrXYe/E54U0/EVoph3E9PExMfjaOcHXukjYhoB/E1KzK215usmKN2hVMKR3q3IY+3RyY9hEwe\ngTzWnkD6Z3leIyIHQlDXTqhh1ECI1dch2hNIAZ/RdGyhD1bnu0dE6acGpMNMCIErLXjjEXukjV5P\n9ODKm1uzZsEGzBYTLTo3DbnN55oF//Bm/w9JPplKwOfHHyJNhtVm4aYhesbIiy9vwDvLX2TK2O/4\nb/0eal1cnbtH9+Si1qGzup6pph0aM/3QJLb8tYPX732Pk4cS2bNpH3s27WPTH1vp+Vh3+o65Pez3\nVcoeKf3IxPuC91hOHY+0NNXTXRsQ5jpQYRoy9VXwrgNRHmydwDmdHKug9buA7aqCt8n5I8ZdVmaw\nXmFwvOxRwSGMdm/ax8huL+XY2wD0gdqLWjfgurvbY7aYubpX3r9c+7cf5LmbXzd8Usjt2juvpHz8\n6R3lLmhSm+dmPHFmbyAP+7YdZNW8ddgibLS/9XJiKkZjMpnYt2U/CYeT8DhPrzR1pbuZ/vqP3Di4\nC7GVQu92pygAeFaHSL/tRmZMDxkcAITlIkSF008YUkokKXoKDulE7xyxQtSDCFMh1sz4dmGca0lD\nBA4WvJ5STAWHMPrmpZl4XMHL8YWAZ6YPw2wp2F/3D+/Ow+fJY9vCTBarmcrnYAB44vAvmf3BfGQg\ngMlk4qPHPmf0t49x+Q0t+HvOmpBTWrcs3067m86LXV+VopDphNz3SxZg7CEbIQREvwL2HkjXXMCK\niLgJYWlSuHqslyJdEfriuhwnTGC+yPiiMkYFhzCRUrL61/WGyeOsDivH952kfMWCfYs+uPNIjvxC\noQiTxrV3ts96vWfzfnb9s4fqDapyYct6YZm6+s/Szfz84a9ZTwbezNWl43qP59sjn1ChSiyaSQvK\nDiulJKai2gVOKQBrC30XtSAORLZNdgpKz7nUFmFrW+hrpXcr+PcizRfri978Hk6vqLaBuSFYQj/J\nlCUqOITJql/Wk55svGuZz+Ojcp2Cf8Ovc0lN/llivImPI8qO0AQBf4ARXw4lvkYcHreX5295nQ1L\nNqOZNWRAUuvi6rwyfzTlYgufxgL0/aZ/+vBXlny7zDDRn6ZprPn1H7oP6syiqb9npfIA/R9ndIVy\nNGrb8IzurZxfhBaDLPckpL6OPgU1ADj0dNr2c7OYUgbSkIkDwLtVfzqQXrC2AktrcC8CzBBxCyJq\naKldHV1YKjiEybxPF4XcW6HZdU2IrpD/t2iPy8PYXm+yduGGoMBgj7DR4Y52dLitLX5fgCZXN8oa\nzJ76wnf8s2Rzjn7/XRv28fagjxk1rXD7KgBs+nMrT3d9EZ/HH3J9hESfRlv/sroMmzSQdwZ9nBW0\nKlaPY9zPT6FpajKcUjBa5D1ISxOkcxoEkvQnBnvXc7ZXgkwZczp196mHf88qiLwXrXLJXXB7Nqng\nECbZvzlnZ7aa6T5IX/28ev56lv2wkhoNq9FjSBfM5px//ZOf+YZ1izdm5VTKrsk1jXl04kDDD9x5\nHy/KERhAf1r54/u/+eP7v2nbo1WBcytJKXn93g+y0nyEEvD5adFJ78e97q6ruOrWNvy7ZheR0Q7q\nXFLrvPl2pYSPsDZFWJvmXzDMpPSDax7B6bvdkDEdyj12zttUEqjgECYd72zPxt+3BH2omi0mLr6i\nAXfXfUhfyJbp4yenMmHZOC5qdTod8bxPF+XYbjO79Ys2knAkiYrVgnPLu13G1wT8AV7r9x7V6lVh\n/B8vEFEu/7nZSceSOX7gRMjzFqsZYdJ47NNBOdZnWO3WoAyzilI6+AnO1HpK8LT07KT0QCARtAoI\nEb6FpiWBeu4Pkw63t+WSdhdhz9xrwWzRt+HsM+Y2xt//UY7AAPoubcM7jslxzJ0ReuMRzaSxYclm\nw3OtulyGZrBLG+jTSvdvP8RX474v0PuwOqyESrcVVT6Sfi/05rOtE7i295UFqk9RSjohrGBuZHBG\nA6vx77mUAQKpE5DHWiGPd0Iea0MgfbJhFoTSSgWHMDGZTbw4dySjpz9Gt/s7UqVuJQIByZQx3/Hn\n9ysMr3Gludi1YU/W60uvutiwHOjBIbK88UrqgW/0ITquHJrZ+H+n1+1l8Td/FOh9REZH0Py6S4M2\n9bFFWLlr1K3cNrwHlWqV/dQByvlFxIwDEQmcGuOwgYhGlHvKsLxM/wjSP8tcS+ECmQppbyOdBfsS\nVhqo4BBGmqbRumszUk6mcXTvCXweH87UvB9L05LSs34e8s59WU8euZmt5qw+/twq1azIh2tfQ8uj\nn78wg8NPfj6E2o1r6mkxyjmw2i20u6k1Nz+idmRTyh4ZSNMXvUUOBsftYLsWogYh4n9BmGsGl5cS\n0j8laJGcdEL6B+em0eeAGnMIs5SEVFbMWYvXnf8iNoA5kxZSvlJ5KlQpT+1GNfls29uMHziRVfPW\noZkEmmbCHmnj5V+eyXMRXdLxFKx2Kz6vwXRaAZ37dSjwe4ipGM2Ha17j39X/cXTvceo3q0u1eiGS\nkClKCSalG5k2CZyzgAA4bkREDkRo+lO4dC9HJj0ECD2hHn6Ieggt6qE8avVkLtwz4D9ufLwUUvs5\nhNmBfw/xUMsROA3yK4UihEAza1zWoTEjpjxMbKUYZoz/iU+f/hqzxYTQBBHREbw87xnqXlLLsI6T\nhxO554LBhkEpsnwE0w9OwubIPzW4opQVUkpkwp2ZU1RPTRSxgrkeIm4m4EEea2vwQW9HVPgSYb0s\ndL3HO0DgcPBJ86VoFUtu15Laz6EYValbyTCdtdAEUbGhs6/6vX7WL9nMiE5j2bZyB5+PnobP48OV\n7saZ6uLkwQSeun4cfn/wwjjQ919uft2lWGw5ny4sNgvPzXgiR2DwuL0s/voP3hnyCTPG/0TKSeN9\nIBSlVPOszNwzOvsMQo++Atr1KzLxsRBPAB6kc2bIaoUQUG4kkLsL2I6IHlH0dpcQKjiEmdliZuAb\nfbBly7ZqMmtERDto3C7vFcN+r5/Du47y1bjv8RhMT3WmOdn0x7aQ14/8ehitujTDYrNgj7ITVT6S\nRz68n2bXXppVJi0pnYFNn2D8g5P46YP5fD5qGvfUG8zOdbvP4N0qSgnm2wjSYAagzIDUV8GzNMSF\n+af31hzXI2I/AEtTELFgvRxR4XOEtezkEivSmIMQogIwHagD7AFuk1ImGpTrC4zKfDlOSvmFECIC\n+A6ohz7R+CcppfHUgFKma/+OVKpVkWmv/MCx/Sdo2qExd468hT++/5v1izaFXDAH+sBxwpEkwxxN\nQgjSkzMMrtJFlHMwZtaTpJxMJflEClUvqBw0TjH1he84sudY1o5ybqcHnPDKPe/wyabxZ/iOFeXc\nktIDnnWABGtz45XUWlUQNpC51zDYIHCc0Gsb7GBuiAykIrTQmQ2E7UqELXiqq5QecP2K9G5GmGuD\n/X8I7czS2BSnIo05CCFeAxKklK8IIZ4CYqWUI3KVqQCsBlqiL0xfA7RAf9a7XEr5m9D/zy4CXpJS\nzsvvviV5zCEvqYlp3NvwYVIT0oLSep9itVvoO+Z2poz9znBB3bSDk4ipGH3Gbbij5kBOGOwzbbFZ\n+GrPB8RWLn/GdSvKuaAPIj+MnoMJQGTuEd0uZznpRh67GmQiOfdmsKNngTXOhaZ3qDgAH0T2R0Q9\nUuAV/zKQiDzZS9+bQmbo9QgbIm46wmy8U+O5dC7HHHoAX2T+/AVwk0GZ64EFUsqEzKeKBUAXKWWG\nlPI3ACmlB1gL1Chie0q0crFRvLfyFdp0b4nVbtF/4bL9zul7JbTh5ke6Uevi6sG/kEIw7dUfitQG\nk8U4jYaUssApNhSluMhAIjJpEMgUkGmZf1L1HeQCOb/0CGFDxE0Dc2P09QtWMF8I0c8T+qkB9KCT\nDrj1tQyu2QVvX+pb4D+ULdW3E2QyMvnpwrzNEqGowaGylPIwQOZ/KxmUqQ7sz/b6QOaxLEKI8kB3\n9KcHQ0KIB4QQq4UQq48fL73TxarUqcSYWU8yJ+Nrph+axP8e6ESFqrFUb1CV+168g+GfD8ZitdDt\n/uuCFqL5PD5+fP8Xjh84ecb37zagIzZHzkdwzaTRsFU9ouNUim2lhHP9YrxBmwyAc07QYWGug1Zx\nJiJ+KSL+N7SKPyMcNxfihk5k+ieFa19Q4JHg3YAMhO4SLonyHXMQQiwEjCa5P1PAe4TYxSOrfjPw\nDfCOlHJXqEqklJOASaB3KxXw3iVabOXyPPLhAzzy4QNB59Ys2KDvR52L2WJi87JtdLi9XdC5guj5\n+I1sWLqFzcu3E/BLTBYTUeUjeHrqI2dUn6KcU4FkghPkAXj1p4kQhCnu9M9CILVKUNAd3QLB3bCh\n5fH0LUrX/J98g4OU8rpQ54QQR4UQVaWUh4UQVYFjBsUOAB2yva4BLMn2ehKwQ0o5oUAtPk9UrGa8\niQ4IYuLPfMzBarPwyvzRbF+1k20rd1K5djytulymupSU0sHWDtI+JHi8wBYyD5Ihxy2QPomc01yN\naGAtxKZBjhsh42tyBjATWNsghHH2g5KqqKFsNtA38+e+wI8GZeYDnYUQsUKIWKBz5jGEEOOAGGBY\nEdtR5twwsDMWa87YLZ6lfXkAABMDSURBVIQgMsZBk6uNkoQVTsNW9ekxuAtt/tdCBQal1BCWS8He\nCX3A+BQH2K+FQmwFKqIGgKUhiIjMIxHoA9U2Tnd2mEFEIaIK/lQtoh7Rd4sTEYBVz9ekVUbEvFTg\nOkqKos5WigO+BWoB+4BeUsoEIURL4EEp5YDMcvcBIzMve1FK+ZkQogb6WMQ2Tofv96SU+XbwldbZ\nSoX1+4y/eHPAhwBZm+i88NNT1GhQtZhbdprH5eHkoURiq5TP2nxIUc4mKQPgXoDMmAlIRMQtYOuM\nKGS3jZQB8PwJ3n/0aa/2ruDbqY8x+PeBtRUicgDClHfqGOndDt7VoFUE2zWA5fQCPFNNsF2N3nte\n/AozW0mlzyihfF4fCUeSiIh2sH/bIRxRdmo3qlFiNtGRUjJ13Ay+fU1/WJQByY2DuzDglbvUDnDK\neUFKPzJ5OLgWAhKEGbAi4r5CmP/f3p3HR1Wfexz/PJNkJgGCrCqCCFRckOuCASwVxSuLWhEV27rj\ndrWgta3oFbdqsVehglrbi4oral2xrFflBhCrVtSACuhLCKtEIqtKIMlke+4fcxInOTPJTM4sifd5\nv17zmjlnzvKdXybzzJlzzu8c3tTsaRFPcWgZ5czUM+evbzDrD69QVVkNqpx93Qj+44HLWkxhAJg/\n4y1enTqv3vWl589YRE67bC77wy/SmMyYFCmbA+VLqLsgkAaBUvTbCdBlUVz/r1pVBMFloZP2socj\nvo7JSBwX+4rXwix96T2euu1F9n9fSrA0SLCsgoUz83n69hebvUxVZeXiVcz4/TM8P/k1ijdt95zz\n5Slz6xUGgGBpkNkPLvhRXfDEtAxa/iY1O8+iZvsAanZfhFasTHek0PWuXTvGFaq/gerYu6Op2TcD\n3XUmWvJntORP6I5TqSnLT2jW5rAthxbmhXtnE3R96FYw+8GF9Orfk2G/GkKWP/bLEdbU1PDHsdNY\nuXgV5fuDobOsp87llqcnNPtwWAh1ER5JWUkZ1VXVjXYvbkw8akpfgb33UfdBXLkC3XMFdJqF+E9I\nXzCN0i2/+KI/51rE57DvMep2u9Z+r/p+Ihp4D/E1/8hEr2zLIc2+2/k9u4t/6I5q9zZX11RAaIf0\nIxOe4PqBkyjbF+20f7fXH1rIBwsK6rriqKqspqKsgmlXPxrXchrqc2zkrsO7/eRgKwwmYVSroWQ6\n7m/o5WjJtHRE+kH2Obh7ZiV0pFJm35gWoWXziHzehi/0M1MaWXFIk+JN27nxp7dzUY/ruOSw8Yzp\ncDl3jZnCwb2iX4KzfH+QrwuL+cdf3GeCRlvHk5P+HrETv4xMH6ve+aLZ+X89/QoCbeqfaR3I8TPh\n4SubvUxjXPT7sK4oGqham9osDUjbSyDriLDDYf0gOcgBD8V+5JRWEfGUb4HGu/hIPisOaVBVWcXv\nh97Flx8VUlVZTXVVNaV7y1i+YAVF67ZFvRY0QEV5JW+//K+Y1jN7+gJqahqeRBeiNUqGh2/4/zb0\naKYtvYeBZxxP50M6cvxp/bn/rTsZfNaAZi/TGBfJdY4CiiDjkNRmaUAkGzo8Ae1uguxfQbvfIF3y\nkcDg2JeRcyYRtz60GvynJi5sM9j2f4rs31vKjq92ceChnfls2ReUlpQRab9tRXklWYFMfnJ8LwoL\nIvcm0rBvpGjWfrw+cj80hHZSHzfM28l0Rw3qy31vxNqLijHxE8lC21wO+2dR/6elbKTdjemKhWoV\nuvePUDY3VLy0GtpeDb7oW/4RZeVBznnOZUzLCXW/kQG5d9Tr8iMdrDgkWU1NDTNvfo4Fj/0vGVmZ\nVFdWceSgw6mqiHxFt1qnXzSUyvJKtnxeVO/on0CbAKPHj4pp3X2O68W6FRsj/qx0y7M3xLVj25h0\nkXa/Q/FB6bOhHb2+9tDuFiQ7as8+Sacl06FsHhD84cJA+59GfV2RthfHvBwRQQ64B805Dw3mA9lI\nztlIZq9kxI6L/ayUZK9MncvCmYupKK+krKSMivJKvvxwPRrl5x6AjMwMctplc88/bqFTtw7k5OaQ\n3TaAPzuLoWMHM3JcbJubv5g42rWVkZGVwZBzB3LK2JM8vS5jUkXEhy/3d8iBBciBHyBd38fX5vy0\n5VGthrIXqTu/oU6Z019T/MR/HL7cm/Hl3tAiCgPYlkPSvf7QQtehqZXBSjIyffgDWVQE3Ye8qcLJ\n5w+mfedc/r75UVbkr2JP8bf0G3IkPY/q7po+mkOP7M7U/D/wyIQn2PjZFvw5fs665nSumXqp59dl\nTKqJZIKk79DOH1REvvwoQE3kow1bIysOSVbybaQLmEN1VQ2X3/NL5jzyBt/t3EtmViZZgSy0poa7\nXp1Yd22FjMwMBp3Z/GO5+510BI+tfIDqqmp8Gb4WdZa1Ma1TNmR0g+oi91NZ/VMfJ0msOCRZn+MO\nY/1K99mSvY/tycW3j+Xi28dSWlLGysWr8GX4GDD82KR0YGc9rxqTGCICuXeh3/2WH35a8gEBpP2k\nNCZLLNvnkESqyvUPX0mgTaDuG7sIBNr4uf7hq+qma5Obw8nnDWbIOQOtZ1NjWgHJPg3p9Cz4h0JG\nDwiMQDq/FupS/EfCthySYN2KDfztN0/z5UeF5LTNZujYwezfW8qWNVvp1b8nl951AX0H9El3TGOM\nB+IfgHR6Kt0xksaKQ4Jt2/ANE0+7h/J9oc3N0pIy3p29nJNGn8iswr+lOZ0xxsTGflZKsNnTF1BZ\nXv9IhmBZBR/ML2Bn0e40pTLGmPhYcUiw9Z9uprrKfQ5DViCLonXb0pDIGGPiZ8UhwfoO6B3xyKDK\nYCWHHpnevmCMMSZWVhwS7IKbRuPPrt8thT/Hz5BzB9Gle3r7SjHGmFhZcUiwbn0O4sF3JnPMz47C\nl+Gj7QFtOO/Gs7h11g3pjmaMMTGzo5WS4PATevPwu/emO4YxxjSbbTkYY4xxseJgjDHGxYqDMcYY\nF0/FQUQ6iUi+iBQ69x2jTDfOmaZQRMZFeH6+iKzxksUYY0zieN1ymAQsUdW+wBJnuB4R6QTcDQwG\nBgF3hxcRETkf2OcxR6u3afUWli9cUe8salXliw/WsviFf7Jx1ZY0pjPG/H/j9WilMcAw5/EsYBlw\na4NpRgH5qroHQETygTOAl0SkHXATcC3wqscsaaGqvD/3I+bPWERpSRnDfjmEs389MubeVffuKeHO\nn9/PxtVfkZnlo6K8iuGXnsJV91/MbaP+RNG6YkRClxvtf/LRTJ77n/izY7uGtDHGNJfX4nCQqhYD\nqGqxiBwYYZruwNaw4SJnHMC9wHSg1GOOtHn8luf4n8fzKd8futrb5tVfkf/8O/x1+f34A01fo/mB\nK2dQ+MkmqiqqqL1e3NKX3mPdyg1s+byIqoqqumlX//MLnp88m6vvi/0atcYY0xxN/qwkIotFZE2E\n25gY1xHp0mMqIscDh6vqnJgWInKtiBSISMHOnTtjXHVy7di6i/n/vaiuMECok71t67/hnVf+1eT8\n+/eWUrDo03oFACBYGmTDJ5td4yvKK3nrqSWJCW+MMY1osjio6nBV7R/hNg/YLiLdAJz7HREWUQQc\nGjbcA9gG/BQ4UUQ2A+8BR4jIskZyzFTVPFXN69q1a6yvL6nWvPclmX53P0rl+4N8+MbKJucPlgYR\nX3yX7awod19z2hhjEs3rDun5QO3RR+OAeRGmWQSMFJGOzo7okcAiVX1UVQ9R1V7AycA6VR3mMU9K\ndejaHomwYZSR6aPzIREP3Kqn40Ed6HRwh4jz115DOpwvw8dAD9eTNsaYWHktDlOAESJSCIxwhhGR\nPBF5EsDZEX0v8LFzm1y7c7q1O+60Y8jJza67BGitTH8mP792RJPziwgTnxxPdpsAGZmhP4U/O4vc\nju24/aXf0qZ9Tl0nfoE2Adp3zuW6aZcn/oUYY0wDoqrpzhC3vLw8LSgoSHcMAIrWbePO0VPYvW0P\nvgxf3Qf+0LEnxbWMOY+8wda12zj21H6cM34U7Tvn8u3273jzqSVsWv0VR590BKOuGEbbA9om8dUY\nY37MRGSFqubFNK0VB+9Ulc2fb6VsXzl9B/Qmy9/0UUrGGJNq8RQH65U1AUSE3v17pjuGMcYkjPWt\nZIwxxsWKgzHGGBcrDsYYY1ysOBhjjHGx4mCMMcbFioMxxhgXKw7GGGNcrDgYY4xxseJgjDHGxYqD\nMcYYFysOxhhjXKw4GGOMcbHiYIwxxsWKgzHGGBcrDsYYY1ysOBhjjHGx4mCMMcbFioMxxhgXKw7G\nGGNcrDgYY4xxseJgjDHGxYqDMcYYFysOxhhjXDwVBxHpJCL5IlLo3HeMMt04Z5pCERkXNt4vIjNF\nZJ2IfCkiY73kMcYYkxhetxwmAUtUtS+wxBmuR0Q6AXcDg4FBwN1hReQOYIeqHgH0A97xmMcYY0wC\neC0OY4BZzuNZwLkRphkF5KvqHlX9FsgHznCeuwq4H0BVa1R1l8c8xhhjEsBrcThIVYsBnPsDI0zT\nHdgaNlwEdBeRDs7wvSKyUkReE5GDoq1IRK4VkQIRKdi5c6fH2MYYYxrTZHEQkcUisibCbUyM65AI\n4xTIBHoA76vqAOADYFq0hajqTFXNU9W8rl27xrhqY4wxzZHZ1ASqOjzacyKyXUS6qWqxiHQDdkSY\nrAgYFjbcA1gG7AZKgTnO+NeAq2MJvWLFil0ish9orT9DdcGyp1przQ2WPR1aa25oPPthsS6kyeLQ\nhPnAOGCKcz8vwjSLgPvCdkKPBG5TVRWRBYQKx1LgdOCLWFaqql1FpEBV8zzmTwvLnnqtNTdY9nRo\nrbkhcdm97nOYAowQkUJghDOMiOSJyJMAqroHuBf42LlNdsYB3ArcIyKrgMuAiR7zGGOMSQBPWw6q\nupvQN/6G4wuAa8KGnwaejjDdFuAULxmMMcYkXms+Q3pmugN4YNlTr7XmBsueDq01NyQou6hqIpZj\njDHmR6Q1bzkYY4xJkhZdHOLou+ktEflORBY2GP+siGwSkU+d2/GpSZ6Q7L1F5ENn/ldExN/Cckfr\nL2uZiKwNa/NIJ0YmOvMZzjrXi0ikLlwCThuud9q0V9hztznj14rIqGRnTURuEeklImVhbfxYKnPH\nmP0U5+TWKhG5oMFzEd87qeIxe3VYu89PXeq69TeV/SYR+UJEVonIEhE5LOy5+NpdVVvsDfgzMMl5\nPAmYGmW604HRwMIG458FLmil2V8FLnQePwaMbym5gU7ARue+o/O4o/PcMiAvhe2cAWwA+gB+4DOg\nX4NpJgCPOY8vBF5xHvdzpg8AvZ3lZLSC3L2ANalq42Zm7wUcCzwX/j/Y2HunpWd3ntvXwtv9NKCN\n83h82Hsm7nZv0VsOxNZ3E6q6BChJVagYNTu7iAjw78DspuZPAq/9ZaXaIGC9qm5U1QrgZUKvIVz4\na5oNnO608RjgZVUNquomYL2zvJaeO92azK6qm1V1FVDTYN50v3e8ZE+3WLK/raqlzuByQicdQzPa\nvaUXh1j6bmrKfzmbWA+JSCCx8RrlJXtn4DtVrXKGiwj1UZUKze4vK2z4GWez+64UfJg1laXeNE6b\nfk+ojWOZN1m85AboLSKfiMg7IjI02WGj5XLE027pbPNErD9bQn28LReRVH1hqxVv9quBN5s5r+cz\npD0TkcXAwRGeuiMBi78N+IbQJthMQifdTU7AcoGkZo/WH1VCJCB3Y/kuUdWvRSQXeJ3QyY3PxZ8y\nZrG0VbRpktrOTfCSuxjoqaq7ReREYK6IHKOqexMdMgov7ZbONk/E+nuq6jYR6QMsFZHVqrohQdma\nEnN2EbkUyANOjXfeWmkvDuq976bGll3sPAyKyDPAzR6iRlp+srLvAjqISKbzjbEHsM1j3DoJyB2t\nvyxU9WvnvkREXiS0KZzM4lAEHNogS8O2qp2mSEQygQOAPTHOmyzNzq2hH5GDAKq6QkQ2AEcABUlP\nXT9XrXjaLep7J0U8/c1VdZtzv1FElgEnENoPkAoxZReR4YS+6J2qqsGweYc1mHdZYytr6T8r1fbd\nBNH7borK+XCr/Q3/XGBNQtM1rtnZnX/+t4HaIyXifu0exJJ7ETBSRDo6RzONBBaJSKaIdAEQkSzg\nbJLf5h8DfSV0dJef0I7bhkeRhL+mC4ClThvPBy50jgrqDfQFPkpyXs+5RaSriGQAON9g+xLawZgq\nsWSPJuJ7J0k5I2l2didzwHncBfgZMfYHlyBNZheRE4DHgXNUNfyLXfztnq497zHune9M6Apzhc59\nJ2d8HvBk2HTvAjuBMkIVcpQzfimwmtAH1AtAu1aUvQ+hD6r1hHqsDbSw3Fc52dYDVzrj2gIrgFXA\n58BfSMHRP8BZwDpC3+DucMZNdv5BALKdNlzvtGmfsHnvcOZbC5yZ4vd3s3IDY532/QxYCYxOZe4Y\nsw903s/7CfXA/Hlj753WkB0Y4nyefObcX90Csy8GtgOfOrf5zW13O0PaGGOMS0v/WckYY0waWHEw\nxhjjYsXBGGOMixUHY4wxLlYcjDHGuFhxMMYY42LFwRhjjIsVB2OMMS7/B477BW8pNNgDAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# KMeans clustering\n", + "km = KMeans(n_clusters=2)\n", + "km.fit(df_pca)\n", + "clusters = km.predict(df_pca)\n", + "\n", + "#Plota os dados em duas dimensões\n", + "fig,ax = plt.subplots()\n", + "ax.scatter(df_pca[:,0], df_pca[:,1], c=clusters)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parte 3" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "homogeneity = 0.5793801642856945\n", + "completeness = 0.9999999999999997\n" + ] + } + ], + "source": [ + "#Utilizar métricas de avaliação de clusteres (completeness e homogeneity)\n", + "score_homo = metrics.homogeneity_score(y,clusters)\n", + "score_comp = metrics.completeness_score(y,clusters) \n", + "\n", + "print('homogeneity = {0}'.format(score_homo))\n", + "print('completeness = {0}'.format(score_comp))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusão" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Para algoritmos de clusterização, o conhecimento sobre os dados é muito importante. Reduzindo as features para 2 componentes, através do PCA, deu para visualizar as classes e observar que uma classe é linearmente separável e as outras duas não. Com o conhecimento prévio, sobre o número de classes do dataset do iris. O kmeans com k = 3 deu um bom resultado, quando utilizado a euristica do método do cotovelo, o indicado foi usar duas classes, de acordo com a distância aos centroides, porém o resultado ficou pior. Indicando que o K = 3 é realmente uma boa escolha. Para este caso o método do cotovelo falhou, por causa da distribuição dos dados e isso foi em decorrência da normalização combinada com o PCA. Talvez com o uso de mais features, ou a utilização de outro tipo de normalização, a euristica funcionaria corretamente. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}