-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimage_helper.py
56 lines (44 loc) · 2.14 KB
/
image_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import cv2
import numpy as np
import rawpy
from rawpy._rawpy import FBDDNoiseReductionMode
def load_image(path):
"""
Source: https://www.quora.com/What-is-the-RGB-to-XYZ-conversion-matrix-Is-it-possible-to-convert-from-RGB-to-XYZ-using-just-this-matrix-no-other-information-If-not-why-not
:param path: path to the raw image.
:return: loaded image.
"""
print('Loading image: {}'.format(path))
with rawpy.imread(path) as raw:
# pack
raw_image = raw.raw_image.astype(np.double)
packed_image = np.zeros((int(raw_image.shape[0] / 2), int(raw_image.shape[1] / 2), 4), dtype=np.int32)
packed_image[:, :, 0] = raw_image[0::2, 0::2] # R Left top
packed_image[:, :, 1] = raw_image[0::2, 1::2] # G Right top
packed_image[:, :, 2] = raw_image[1::2, 0::2] # G Left bottom
packed_image[:, :, 3] = raw_image[1::2, 1::2] # B Right bottom
# averaged green channel
averaged_image = np.zeros((packed_image.shape[0], packed_image.shape[1], 3), dtype=np.int32)
averaged_image[:, :, 0] = packed_image[:, :, 0] # R
averaged_image[:, :, 1] = (packed_image[:, :, 1] + packed_image[:, :, 2]) / 2 # G
averaged_image[:, :, 2] = packed_image[:, :, 3] # B
# convert color channel
conversion_matrix = raw.rgb_xyz_matrix[0:3, :]
xyz_image = averaged_image @ conversion_matrix.T
return xyz_image
def auto_post_process_image(path):
"""
Post-processes the raw image using RawPy.
:param path: Image path.
:return: post-processed image.
"""
print('Loading image: {}'.format(path))
with rawpy.imread(path) as raw:
post_processed_image = raw.postprocess(half_size=True, fbdd_noise_reduction=FBDDNoiseReductionMode.Full)
return post_processed_image
def draw_boxes(boxes, classes, image):
for box, cls in zip(boxes, classes):
color = cls[1]
cv2.rectangle(image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, 2)
cv2.putText(image, cls[0], (int(box[0]), int(box[1] - 5)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, [255,255,255], 2, lineType=cv2.LINE_AA)
return image