Skip to content

Kalman Filter implementation in Python using Numpy only in 30 lines.

Notifications You must be signed in to change notification settings

CapAI/kalman_filter

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

Implementation of Kalman filter in 30 lines using Numpy. All notations are same as in Kalman Filter Wikipedia Page.

It is a generic implementation of Kalman Filter, should work for any system, provided system dynamics matrices are set up properly. Included example is the prediction of position, velocity and acceleration based on position measurements. Synthetic data is generated for the purpose of illustration.

Running: python kalman-filter.py

import numpy as np

class KalmanFilter(object):
    def __init__(self, F = None, B = None, H = None, Q = None, R = None, P = None, x0 = None):

        if(F is None or H is None):
            raise ValueError("Set proper system dynamics.")

        self.n = F.shape[1]
        self.m = H.shape[1]

        self.F = F
        self.H = H
        self.B = 0 if B is None else B
        self.Q = np.eye(self.n) if Q is None else Q
        self.R = np.eye(self.n) if R is None else R
        self.P = np.eye(self.n) if P is None else P
        self.x = np.zeros((self.n, 1)) if x0 is None else x0

    def predict(self, u = 0):
        self.x = np.dot(self.F, self.x) + np.dot(self.B, u)
        self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q
        return self.x

    def update(self, z):
        y = z - np.dot(self.H, self.x)
        S = self.R + np.dot(self.H, np.dot(self.P, self.H.T))
        K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))
        self.x = self.x + np.dot(K, y)
        I = np.eye(self.n)
        self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), 
        	(I - np.dot(K, self.H)).T) + np.dot(np.dot(K, self.R), K.T)

def example():
	dt = 1.0/60
	F = np.array([[1, dt, 0], [0, 1, dt], [0, 0, 1]])
	H = np.array([1, 0, 0]).reshape(1, 3)
	Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.05, 0.0], [0.0, 0.0, 0.0]])
	R = np.array([0.5]).reshape(1, 1)

	x = np.linspace(-10, 10, 100)
	measurements = - (x**2 + 2*x - 2)  + np.random.normal(0, 2, 100)

	kf = KalmanFilter(F = F, H = H, Q = Q, R = R)
	predictions = []

	for z in measurements:
		predictions.append(np.dot(H,  kf.predict())[0])
		kf.update(z)

	import matplotlib.pyplot as plt
	plt.plot(range(len(measurements)), measurements, label = 'Measurements')
	plt.plot(range(len(predictions)), np.array(predictions), label = 'Kalman Filter Prediction')
	plt.legend()
	plt.show()

if __name__ == '__main__':
    example()

Output

Result

About

Kalman Filter implementation in Python using Numpy only in 30 lines.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%