
Cantera-soot handbook
sectional soot computations within Cantera

Authors: E. Lameloise

Contents

1 Introduction 4

1.1 Presentation . 4

1.2 Installation . 4

2 Sectional method 5

2.1 Population Balance Equation . 5

2.2 Volumes creation . 5

3 Transport equation 6

3.1 Convective fluxes . 7

3.2 Diffusive fluxes . 7

3.3 Thermophoresis . 8

4 Radiative heat transfers 8

5 Source terms 9

5.1 Dimerization . 9

5.2 Nucleation . 9

5.3 Condensation . 10

5.4 Coagulation . 11

5.5 Surface chemistry . 12

6 API 15

6.1 Pre-treatment . 15

6.2 Treatment . 15

6.3 Post-treatment . 16

7 Examples 20

7.1 Burner flame . 20

7.1.1 Computing the non-sooting flame 20

7.1.2 Computing the sooting flame . 22

7.1.3 Post-treatment . 24

2

7.2 Impinging jet flame . 26

7.2.1 Non-sooting and sooting flames . 26

7.2.2 Post-treatment . 26

A Advanced methods 30

B Non-sooting impinging jet flame 32

C Sooting impinging jet flame 34

D About dNp/d log(dm) 35

Bibliography 37

3

1 Introduction

Cantera-soot is a modified version of Cantera/2.3-avbp that enables the computation
of soot for axisymmetric stagnation flows (impinging jets, burner and counterflow 1D
flames).

1.1 Presentation

Cantera-soot uses a Discrete Sectional Method (DSM) to solve the soot particles dis-
tribution alongside the flame gaseous chemistry. In comparison with its predecessor
(CAN2SOOT), Cantera-soot is able to take into account the consumption of gaseous
species by the soot particles. Moreover, Cantera-soot is also able to solve soot radiative
heat transfer using an optically-thin limit approximation.

Most of the equations that are implemented and introduced in the following were taken
from the PhD. thesis of Pedro Rodrigues [11]

The basic usage of Cantera is not affected by the implementation of the soot module.
Additionnal capabilities of the code (soot calculation) are activated through the keyword
sections when building the Flame Cantera object.

In the following, the implemented equations are introduced. Built-in API methods are
then listed. Eventually, two examples are treated : a burner and an impinging-jet flame
that were taken from the ISF 4 workshop [10].

1.2 Installation

Cantera-soot is currently available on CERFACS private Gitlab server (Nitrox) as the
WIP/SOOT branch of the Cantera-avbp project. It can be cloned through :

git clone -b WIP/SOOT git@gitlab.com:cerfacs/chemistry/cantera-avbp.git

It will hopefully soon be available on CERFACS public gitlab server \cite{CERFACSgitlab}.

It can be installed on both MacOS and Linux platforms using the tutorial available on
CERFACS chemistry webpage [3].

4

2 Sectional method

2.1 Population Balance Equation

It is assumed that the volume distribution of the soot population’s particle density
n [cm−6] follows the Population Balance Equation (PBE) (1) :

∂n

∂t
+∇ · (un)︸ ︷︷ ︸

Convection

−∇ ·
(
Cthν

∇T
T
n

)
︸ ︷︷ ︸

Thermophoresis

= ∇ · (Ds∇n)︸ ︷︷ ︸
Diffusion

+ ṅs︸︷︷︸
Source

(1)

Because of the complex chemistry that governs soot formation, soot particles exist in a
wide range of size covering approx. 1 nm to 100 nm. Accurately describing the distri-
bution of particles in terms of size at each grid point thus proves complex and computa-
tionally expensive (usually involving stochastic methods such as Monte-Carlo appoaches).
In order to reduce the computational costs while keeping an accurate enough description
of the soot particles distribution, the soot distribution function is discretized in differ-
ent groups with the assumption of constant volume fraction density (q(v) = vn(v) =
qk [cm−3], v ∈ [V min

k , V max
k]) within each group. Each group might be interpreted as the

lump of any soot particle in its volume range and is called a section.

2.2 Volumes creation

Volumes are created to follow a geometrical progression :

V max
k = V MIN

(
V MAX

V MIN

) k
Ns

V min
k = V max

k−1

(2)

V MIN is computed as the volume of the smallest possible soot particle. As soot stems
from the collision of two so-called dimers - each dimer resulting of the collision of two
precursors (Policylic Aromatic Hydrocarbon (PAH)) -, the minimal volume equals four
times the volume of the smallest precursor. The maximal volume is the volume of the
biggest expected soot particle, taken from experimental data.

V MIN = 2 min(nCk)VC2

V MAX = 1.10−9 cm3
(3)

With nCk the number of carbon atoms in the considered precursors. The volume of a C-C
binding in solid phase is computed as :

VC2 = 2
WC

ρsNA

= 2.14 10−23 cm3 (4)

Where ρs = 1.86 103g.cm−3 is the density of soot, considered constant whatever the size
of the particle.

Two conditions must be accounted for to compute the maximal volume of the first section
:

5

• The first section should host all the nascent soot particles :

V max
1 ≥ 2 max(nCk)VC2

• The computation of condensation (see Sect.5.3)involves an integration over the in-
terval [V max

k − Vd, V min
k]. For the interval to remain positive :

V max
1 ≥ V max

1 + Vd︸︷︷︸
≤max(nCk)VC2

Which gives the overall condition :

V max
1 = VC2 max

(
2 min(nCk) + max(nCk), 2 max(nCk)

)
(5)

Sections mean volume can then be computed as the logarithmic average of the maximal
and mean volumes. Mean diameters computation is then straighforward :V

mean
k =

Vmaxk −Vmink

log(Vmaxk /Vmink)

dmeank =
(

6Vmeank

π

)1/3 (6)

In order to compute mean cross-section, soot aggregates fractality must be taken into
account. Soot aggregates fractal dimension was found to be approximately equal to
Df = 1.8 for particles volumes bigger than Vmorpho = 3.98 10−19 cm3.

Mean cross-section and collisional diameter are then computed as :d
coll
k = 6

(36π)
1/Df

V mean
k

(Df−2)/Df
(
SC2(V

mean
k /VC2)

θk/3
)(3−Df)/Df

Smeank = SC2

(
Vmeank

VC2

)θk/3 (7)

Where

θk = min

(
2.0,

3 log(V mean
k /Vmorphology) + 2 log(Vmorphology/VC2)

log(V mean
k /VC2

)

)
(8)

3 Transport equation

As the distribution was dicretized in Ns sections, Ns different variables must be trans-
ported. It was chosen to solve this system alongside the usual system of equations solved
by CANTERA, meaning that CANTERA-soot solves a system of 4 + nspecies + Ns equa-
tions.

The PBE (eq. 1) is discretized with the assumption of constant volume fraction density
qk within each section k. Moreover, as gaseous species are solved in terms of mass fraction
by CANTERA, it is chosen to solve the soot mass fraction Ys instead of the soot particles
density volume distribution n. The 1D discretized PBE implemented in CANTERA-soot
is thus :

ρv
∂Ys,k
∂z︸ ︷︷ ︸

Convection

− ∂

∂z

(
Cthµ

1

T

∂T

∂z
Ys,k

)
︸ ︷︷ ︸

Thermophoresis

=
∂

∂z

(
ρDs,k

∂Ys,k
∂z

)
︸ ︷︷ ︸

Diffusion

+ ρsρq̇s,k︸ ︷︷ ︸
Source

(9)

6

In CANTERA, the Jacobian matrix is computed out of the matrix of residuals. The
calculation of each residual for soot at point j and for section k is :

rsdk,j =
Source− Convection + Diffusion + Thermophoresis

ρ

− Ys,k,j(t)− Ys,k,j(t− 1)

∆t

(10)

3.1 Convective fluxes

Convective fluxes are computed through an upwind scheme on the derivative of the soot
mass fraction. It was mainly chosen because it is already implemented to compute the
convective fluxes of the gaseous species.

convections,k, =

{
ρjuj

Ys,k,j−Ys,k,j−1

zj−zj−1
u ≥ 0

ρjuj
Ys,k,j−Ys,k,j+1

zj−zj+1
u < 0

(11)

3.2 Diffusive fluxes

Soot diffusive mass fluxes are defined according to eq. 9 :

js,k = ρDs,k
∂Ys,k
∂z

(12)

Soot particles diffusion was studied by Epstein [5] and the soot particles diffusion coeffient
can be expressed as :

Ds,k =
3

2ρ

(
1 +

αTπ

8

)−1 1

d2
mean,k

√
WgaskbT

2πNA

(13)

Where αT is a thermal accodomodation factor usually taken as 0.9

As diffusion and diffusive mass fluxes are diffusive terms, they are computed through
centered differences. Diffusion of soot particles from section k at point j can thus be
written :

Diffusionk,j =
2

zj+1 − zj−1

(
js,k,j+ 1

2
− js,k,j− 1

2

)
(14)

Where diffusive mass flux are evaluated at midpoints j ± 1
2

:

js,k,j± 1
2

= ρj± 1
2
Ds,k,j± 1

2

Ys,k,j± 1
2

+ 1
2
− Ys,k,j± 1

2
− 1

2

zj± 1
2

+ 1
2
− zj± 1

2
− 1

2

(15)

Density and mean molecular weight are evaluated at midpoint by averaging the two
adjacent points. CANTERA provides built-in ”MeanMolecularWeight” and ”Density”
methods in the ”Thermo” class but it was remarked that setting the gas state to each
midpoint and pointing towards the values was too time-expensive.

7

3.3 Thermophoresis

As well as diffusion, thermophoresis is a diffusive term that involves second order deriva-
tives. Each derivative is computed through centered differences. The first one is computed
at midpoints j± 1

2
while the second one is computed at point j. Thermophoretic diffusion

thus writes :

Thermophoresisk,j =
2

zj+1 − zj−1

(
jthermoph

s,k,j+ 1
2

− jthermoph

s,k,j− 1
2

)
(16)

With the thermophoretic mass flux computed in the free molecular regime [4] :

jthermoph

s,k,j± 1
2

= Cth︸︷︷︸
0.554

µ
1

T

∂T

∂z

∣∣∣∣
j± 1

2

(17)

Where the temperature gradient is once again computed through centered differences :

∂T

∂z

∣∣∣∣
j+ 1

2

=
Tj+1 − Tj
zj+1 − zj

(18)

Viscosity is evaluated at midpoint by a Sutherland law. Indeed, CANTERA provides
a built-in ”viscosity” method in the ”Transport” class but it was remarked that setting
the gas state to each midpoint and pointing towards the value of the viscosity was too
time-expensive.

4 Radiative heat transfers

Radiative heat transfers are taken into account through RDG theory. The radiating power
PR
s of soot particles is computed as :

PR
s = −4σκPl,sT̃

4 (19)

Where κPl,s is the Planck mean absorption coefficient (Modest [8]), calculated as :

κPl,s(T) = 3.83
C0fV T

C2

(20)

With fV the soot volume fraction defined as

fV = ρ/ρs

Ns∑
k=1

Ys,k (21)

C0 and C2 the Planck constants :{
C0 = 36πab

(a2−b2+2)+4a2b2

C2 = hc
kb

(22)

Where a and b are respectively the real and immaginary part of the refractive index of
soot (Smyth and Shaddix [12]) : m = a − ib = 1.57 − 0.56i, h ' 6.626 10−34 J.s−1 and
c ' 3.0 108 m.s−1 is the speed of light in void.

8

The radiative power of soot particles is then added to the radiative power of the gaseous
species considered by CANTERA (H2O and CO2).

Note that soot related radiative heat losses are only computed if energy equation and
gaseous radiative heat losses are enabled (energy enabled=True and radiation enabled=True).

5 Source terms

The theory used to compute source terms is taken from Blanquart & Pitsch [1] (in Bock-
horn [2]) and Mueller [9].

5.1 Dimerization

The dimerization corresponds to the coalescence of two PAH particles, resulting in a
dimer. The overall dimerization rate rd [g.s−1] is computed as the sum of each PAH
dimerization rate K00,k [mol.g.s−1] :

rd =

NPAH∑
k=1

K00
k NA

K00
k =

1

ρ
CnW

4
k

√
4πkbT
WC

NA
nCk

[PAHk]
2d2
kNA

(23)

Where Cn = 7.5 10−12 mol4.g−4 and dk is the diameter of the considered PAH.

The volume of the resulting dimer Vd [cm3] is computed by averaging each production
rate K00

k weighed by the number of carbon atoms in the corresponding PAH nCk and
multiplying it by the volume of a C-C binding VC2 :

Vd =

∑NPAH
k=1 K00

k n
C
k∑NPAH

k=1 K00
k

VC2 (24)

The consumption of each PAH by the dimerization process is taken into account in
sootConsumption ([mol.cm−3.s−1]) :

sootConsumptionk = 2K00
k ρ (25)

The factor 2 is due to the fact that a single mole of dimer is created by the collision of
two moles of PAHs. This array gathers the consumption of any species by soot particles.
That’s why it will be further modified when computing surface chemistry.

5.2 Nucleation

Nucleation is the inception of a primary soot particle by the coalescence of two dimers. As
proposed by Blanquart and Pitsch [1], dimers are lumped into a single equivalent dimer

9

during the dimerization process, thus a single collision process between two equivalent
dimers occurs during nucleation. The dimers collision frequency βd [cm6.s−1.g−1] is given
in by :

βd = εnuclβfm

√
2

Vd

(
2

(
6Vd
π

)1/3
)2

(26)

Whera εnucl = 2.5 is an efficiency coefficient to take Van der Walls interactions into

account and βfm =
√

πkbT
2ρs

1
ρ

[cm
11
2 .s−1.g−1] is a term that appears each time collision

occurs in free molecular regime.

The dimer particles density Nd [cm−3] is computed through :

Nd =

√
rd
βd

(27)

Eventually, the nucleation source term qnucl1 [cm3.g−1.s−1] is computed for the first section
as follows:

q̇nucl1 = VdβdN
2
d (28)

This therm will be further corrected. Indeed, dimers can either create a new soot nuclei
or condensate onto an already existing soot particle. Thus, each dimer particle cannot
account for nucleation.

5.3 Condensation

Condensation correponds to the collision between a dimer and a soot particle. The dimer
condensates on the soot particle, thus increasing its mass and volume. The overall con-
densation source term kcond [m3.s−1.kg−1] is computed as the sum of each section’s source
term kcondk :

kcond =
Ns∑
k=1

kcondk

kcondk = βcondk qk
V max
k − V min

k

V mean
k

βcondk = εcondβfm

√
1

V mean
k

+
1

Vd
+

(
dcollk +

(
6Vd
π

)1/3
)2

(29)

βcondk is frequency of the collisions between a dimer and a particle of section k. The
efficiency coefficient is taken as εcond = 1.3.

The dimer particle density available for nucleation can now be corrected :

Nd = −kcond
2βd

+

√
rd
βd

+

(
kcond
2βd

)2

q̇nucl1 = VdβdN
2
d

(30)

For each section, condensation source term is then divided into three different terms
depending whether :

10

• the mass comes from a dimer that leaves the gas phase towards section k (term1
k),

term1
k = Ndβ

cond
k qk

Vd∆Vk
Vmoyk

V moy
k =

(Vmaxk −Vd)+Vmink

2

∆Vk = (V max
k − Vd)− V min

k

(31)

• the mass comes from a dimer that condensates onto a particle of section k − 1 to
enter section k (term2

k),
term2

k = Ndβ
cond
k−1 qk−1

Vd∆Vk−1

Vmoyk−1

V moy
k =

Vmaxk +(Vmaxk −Vd)

2

∆Vk = V max
k − (V max

k − Vd) = Vd

(32)

• the mass comes from a particle that leaves section k − 1 towards section k through
condensation(term3

k).
term3

k = Ndβ
cond
k−1 qk−1

Vmoyk−1 ∆Vk−1

Vmoyk−1

V moy
k =

Vmaxk +(Vmaxk −Vd)

2

∆Vk = V max
k − (V max

k − Vd) = Vd

(33)

Where the terms Vmoy and ∆Vk are due to an integration of the PSDF within each section
(details are given by P. Rodrigues [11]).

Source terms are then computed for each section as :

q̇cond(k) = term1
k︸ ︷︷ ︸

gas →
dimer

k

+ term2
k︸ ︷︷ ︸

k−1 →
dimer

k

+ term3
k︸ ︷︷ ︸

k−1→
soot

k

− term3
k+1︸ ︷︷ ︸

k →
soot

k+1

(34)

5.4 Coagulation

The coagulation occurs when two soot aggregates merge to form a bigger aggregate.

The overall coagulation rate of two particles from sections (l,k) - written βcoagl,k - is the

mix of two collision regimes : the free molecular (βfml,k) and the continous (βcontl,k) ones :β
fm
l,k = εcoagβfm

√
1

Vmeank
+ 1

Vmeanl

(
dcollk + dcolll

)2

βcontl,k = 2kbT
3µ

(
dcollk + dcolll

) (
Cuk
dcollk

+ Cul
dcolll

) (35)

Where Cuk & Knk are respectively the Cunningham and Knudsen numbers :{
Cuk = 1 + 1.257Knk

Knk = 2λgas
dcollk

(36)

The mean free path (λgas) is defined by the kinetic theory :

λgas =
kbT√

2πd2
gazP

, dgaz = 2.0 10−8 cm (37)

11

The overall coagulation rate is then computed as :

βcoagl,k =
βfml,k β

cont
l,k

βfml,k + βcontl,k

(38)

It can be noted that βcoagl,k ' min
(
βfml,k , β

cont
l,k

)
. However, this approximation is not used

in CANTERA-soot.

Once the overall coagulation rate of particles from (l,k) is computed, the source terms
relative to each section can be computed. These terms correspond to the mass that leaves
both section through coagulation.{

termk = βcoagl,k qlqk
∆Vl∆Vk
Vmeank

terml = βcoagl,k qlqk
∆Vl∆Vk
Vmeanl

(39)

Where ∆Vk = V max
k − V min

k is the size of the section.

The minimal size of the newly formed particle is equal to Vmin,l + Vmin,k, which is said to
be in section m. Section m is thus chosen so that V min

l + V min
k ∈ [V min

m , V max
m].

Particles created by the coagulation of particles from (l,k) will thus at least enter section
m :

if V max
k + V max

l ≤ V max
m ,

{
termm = terml + termk

termm+1 = 0
(40)

Where termm & termm+1 are respectively the source terms for section m and m + 1
resulting from the coagulation of (l,k).

If the newly formed particle can be bigger than V max
m , some mass will enter section m+ 1

(note that it is not possible to reach section m+ 2 because of the way the volumes of the
sections were chosen). In this case :

if V max
k + V max

l > V max
m ,

{
termm = (terml + termk)

Vmaxm −Vmaxk −Vmaxl

∆Vl+∆Vk

termm+1 = (terml + termk)
Vmaxk +Vmaxl −Vmaxm

∆Vl+∆Vk

(41)

The overall source terms are then evaluated as a sum of the contribution of each sections
:

q̇coagk = −
∑Ns

k=1 termk

q̇coagl = −
∑Ns

l=1 terml

q̇coagm =
∑Ns

m=1 termm

q̇coagm+1 =
∑Ns−1

m=1 termm+1

(42)

5.5 Surface chemistry

Surface chemistry corresponds to the reactions between the soot aggregates and the
gaseous media. In opposition to the condensation, the considered gaseous species are
not the precursors. In our case, considered species are : H2, OH, H2O, C2H2, O2 & H.

12

The chosen reactions are those from the HACA-RC mechanism. They are summed up in
Tab. 1. The reactions follow an Arrhenius law :

ki = AiT
β exp

(
−Ea
RT

)
, with

ki : Rate constant [s−1 or m3.mol−1]

A : Pre-exponential factor [s−1 or m3.mol−1]

β : Fudge factor [−]

Ea : Activation energy [kJ.mol−1]

(43)

This set of reactions was proposed by Mauss [7] as well as the Arrhenius parameters [6].
The efficiency of reaction 7 is taken from Xu [13].

Num. Reaction k A β Ea

1 SOOTnH + H
k1f
⇀↽
k1b

SOOT*
n + H2

k1f 1.000 1014 0 0
k1b 1.439 1013 0 −37.63

2 SOOTnH + OH
k2f
⇀↽
k2b

SOOT*
n + H2O

k2f 1.630 108 1.4 6.10
k2b 1.101 108 1.4 31.14

3 SOOT*
n + H

k3f
⇀↽
k3b

SOOTnH
k3f 1.000 1013 0 0
k3b 0 0 0

4 SOOT*
n + C2H2

k4f
⇀↽
k4b

SOOT*
nC2H2

k4f 3.500 1013 0 0
k4b 3.225 1014 0 181.69

5 SOOT*
nC2H2

k5f
⇀↽
k5b

SOOTn+2H + H
k5f 1.000 1010 0 20.0
k5b 8.770 1011 0 74.44

6 SOOT*
n + O2

k6f→ SOOT*
n-2 + 2CO k6f 1.000 1012 0 8.4

6’ SOOT*
nC2H2 + O2

k6′f→ SOOT*
n + 2HCO k6′f 1.000 1012 0 6.4

7 SOOTnH + OH
k7f→ SOOT*

k-2 + CH + HCO k7f Efficiency γ = 0.13

Table 1: HACA-RC mechanism

As shown by Rodrigues [11], applying a QSS assumption on the soot radicals SOOT∗n,
SOOTnH & SOOT∗nC2H2 enables to write an approximation of both the surface growth
and oxydation rates.

Surface growth corresponds to the addition of an ethylene molecule to a soot particle. Its
rate q̇sg is computed through :

q̇sg = q4 '
QSS

q̇4fχp − q̇4bχc (44)

Where - considering reaction i - qi are reaction rates [s−1] and q̇i are pseudo reaction rates
that only accounts for the non-QSS species. χ factors are computed through the QSS (in
[11] : Appendix 1)

χp = λ
q̇2f+q̇1f+q̇3b+q̇7f+q̇5b(1−α)

q̇2b+q̇1b+q̇3f+q̇4fα

χc = λ
q̇4f

q̇4b+q̇6′f+q̇5f
+ q̇5b

q̇4b+q̇6f+q̇5f

χ = λ

With α =
q̇5f

q̇4b+q̇6′f+q̇5f
and λ = 1/SC2 a coefficient that takes active surface into account.

13

Oxidation corresponds to the loss of mass towards gas phase and is computed similarly :

q̇ox = q6 + q6′ + q7 '
QSS

q̇6f (χp + χc) + χq̇7f (45)

The retroaction on the gas phase is taken into account for each species k through the
pseudo reaction rates :

sootConsumption(k) =
∑

k∈reaction i

q̇iAχx (46)

Where the χx coefficient is either χ, χp or χc, depending on the reaction (the coefficient
to be used comes from the QSS development).

The active sites concentration A [mol.cm−3] is computed as :
A = ∆q

VC2
NA

∆q =
∑Ns

k=1
3
θk
V

3−θk
3

C2
q(k)

(
V

θk
3

max,k − V
θk
3

min,k

)
(47)

At this point, q̇sg and q̇ox gives the overall source term linked to surface chermistry. This
source term must then be dispactched between each of the Ns sections. The source term
of each section is once again splitted into three terms depending whether the mass comes
from the gas phase, the section k− 1 (surface growth) or k+ 1 (oxidation) ... For surface
growth, the terms are computed as follow :

term1
k = 1

ρ
3
θk
q̇sgqkV

3−θk
3

C2

(
(V max

k − VC2)
θk
3 − V

θk
3

min,k

)
term2

k = 1
ρ

3
θk−1

q̇sgqk−1V
3−θk−1

3
C2

(
V

θk−1
3

max,k−1 −
(
V max
k−1 − VC2

) θk−1
3

)
term3

k = 1
ρ

3
θk−1+3

q̇sgqk−1V
−
θk−1

3
C2

(
V

θk−1+3

3
max,k−1 −

(
V max
k−1 − VC2

) θk−1+3

3

) (48)

The surface growth source term for each section is then computed as :

q̇sgk = term1
k︸ ︷︷ ︸

gas→k

+ term2
k︸ ︷︷ ︸

k−1→
gas
k

+ term3
k︸ ︷︷ ︸

k−1→
soot

k

− term3
k+1︸ ︷︷ ︸

k→k+1

(49)

For oxidation, the terms are computed as follow :

term1
k = 3

θk

1
ρ
q̇oxq(k)V

3−θk
3

C2

(
V

θk
3

max,k − (V min
k + VC2)

θk
3

)
term2

k = 3
θ(k+1)

1
ρ
q̇oxqk+1V

3−θ(k+1)
3

C2

((
V min
k+1 + VC2

) θ(k+1)
3 − V

θ(k+1)
3

min,k+1

)
term3

k = 3
θk+3

1
ρ
q̇oxqk+1V

− θ(k+1)
3

C2

((
V min
k+1 + VC2

) θ(k+1)+3
3 − V

θ(k+1)+3
3

min,k+1

) (50)

And the source term for each section is computed accordingly :

q̇oxk = − term1
k︸ ︷︷ ︸

k→gas

− term2
k︸ ︷︷ ︸

k−1→
gas
k

+ term3
k︸ ︷︷ ︸

k−1→
soot

k

− term3
k−1︸ ︷︷ ︸

k→k−1

(51)

Finally, the overall source term for section k can be computed as :

q̇sk = q̇nuclk + q̇condk + q̇coagk + q̇sgk + q̇oxk (52)

Source term is computed in [cm3.g−1.s−1]. Before it is dumped into the discretized PBE
(9), it is converted to SI units [m3.kg−1.s−1].

14

6 API

In this section, most of the soot-related methods are described.

6.1 Pre-treatment

BurnerFlame, ImpingingJet, CounterFlowDiffusionFlame, ... Soot computa-
tion is theoretically possible on any flame of type ”axisymmetric stagnation flow”. Ac-
tivation of soot computation is made through the keyword ”sections” when building the
flame object.

f = ct.BurnerFlame(gas=gas, width=width, sections=sections)

f = ct.ImpingingJet(gas=gas, width=width, sections=sections)

...

soot setup Sets sections informations to build them (precursors, collision model & trash
section), soot chemistry (retroaction on gas phase, condensation of dimers, coagulation
between particles, surface growth, particles oxidation & particles radiative heat loss) and
whether section informations should be printed on screen or not.

f.soot_setup(precursors = list[str],

retroaction =bool,

condensation = bool,

coagulation = bool,

surface_growth = bool,

oxidation = bool,

fractal_aggregates = bool,

radiation = bool,

trash_section = float,

show_sections = bool)

NB : Trash section is set by its diameter [cm], any negative or null value will disable
trash section.

This method calls several different properties, each corresponding to an aspect of soot
chemistry. Eventhough it is not advised to use the properties outside of the soot setup
method, the advanced user will find these in Appendix A.

6.2 Treatment

restore + solve CANTERA’s basic restore & solve methods. To be used on the first
approach, might fail on tricky flames.

15

f.restore(filename = str, name = str)

f.solve(loglevel = int, refine_grid = str)

soot source Return a dictionnary containing source terms ([s−1]) :

• key = ’inception’
(sections x points) array containing nucleation source terms,

• key = ’condensation’
(sections x points) array containing condensation source terms,

• key = ’coagulation’
(sections x points) array containing coagulation source terms,

• key = ’surface growth’
(sections x points) array containing surface growth source terms,

• key = ’oxidation’
(sections x points) array containing oxidation source terms.

f.soot_source

Eventhough this method is more related to post-processing, it is introduced in this section
as it must be used after solving the flame via f.solve (otherwise, source terms will be zeros).

soot fluxes Returns a dictionnary containing soot fluxes ([g.cm−3.s−1]) :

• key = ’convection’
(sections x points) array containing convective fluxes,

• key = ’diffusion’
(sections x points) array containing diffusive fluxes,

• key = ’thermophoresis’
(sections x points) array containing thermophoretic fluxes.

f.soot_fluxes

As same as soot source, this method shall be used after solving the flame.

6.3 Post-treatment

soot Y Returns a (sections x points) array containing the soot mass fraction for each
grid point and each section.

f.soot_Y

16

soot q Returns a (sections x points) array containing the volume distribtion of the soot
volume [cm−3] at each grid point :

qsoot,k =
ρ

ρs
Ys,k

1

V max
k − V min

k

f.soot_q

soot N Returns an (sections x points) array containing the soot particles number den-
sity [cm−3] in each section at each grid point :

Nsoot,k = qsoot,k log
V max
k

V min
k

=
ρ

ρs
Ys,k

log
Vmaxk

Vmink

V max
k − V min

k

f.soot_N

soot fv Returns a (points) vector containing the soot volume fraction at each grid point
:

fV =
Ns+1−last∑
k=1+first

qsoot,k
(
V max
k − V min

k

)
=

ρ

ρs

Ns+1−last∑
k=1+first

Ys,k

Argmunents may be :

• (first, last) : indices of the first and last sections to be taken into account,

• (min, max) : Mean volumes [cm3] of the first and last sections to be tanken into
account.

f.soot_fv(first = int, last = int)

f.soot_fv(min = float, max = float)

soot Np Returns a (points) vector containing the soot particles number density [cm−3]
at each grid point :

Np =
Ns+1+last∑
k=1+first

Nsoot,k =
ρ

ρs

Ns+1+last∑
k=1+first

Ys,k
log

Vmaxk

Vmink

V max
k − V min

k

Argmunents may be :

• (first, last) : indices of the first and last sections to be taken into account,

• (min, max) : Mean diameters [cm] of the first and last sections to be tanken into
account.

f.soot_Np(first = int, last = int)

f.soot_Np(min = float, max = float)

17

soot psdf Returns a (sections) vector containing the soot particles size distribution
[cm−3] at height HAB [m] for each section.

Three types of PSDF can be plotted :

• if out = ’Np’, the PSDF will return :

PSDF = Np =
ρ

ρs
Ys

log Vmax

Vmin

V max − V min

• if out = ’Q’, the PSDF will return :

PSDF = q =
ρ

ρs
Ys

1

V max − V min

• if out = ’dNp/dlogd’, the PSDF will return :

PSDF =
1

1− θ
3

q =
1

1− θ
3

ρ

ρs
Ys

1

V max − V min

θ = 2 if V mean
k < vlim

θ = 3 log
Vmeank

vlim
+ 2

3

log
Vlim
VC2

log

Vmeank

VC2
else

This is what is usually plotted versus the mobility diameter as dNp
d log(dm)

. However,
the derivation of this quantity is unsure. What was done is related in Appendix D.

f.soot_psdf(HAB = float,

out = str)

soot dp Returns a (points) vector containing the primary particles diameter [cm] at
each point.

f.soot_dp

soot np Returns a (points) vector containing the number of primary particles per ag-
gregate at each point.

f.soot_np

flame.sections min/max/mean v Returns a (sections) vector containing the min/-
max/mean volume of each section [cm3].

f.flame.sections_min_v

f.flame.sections_max_v

f.flame.sections_mean_v

18

flame.sections mean/col d Returns a (sections) vector containing the mean/colli-
sional diameter of each section [cm].

f.flame.sections_mean_d

f.flame.sections_col_d

flame.sections mean s Returns a (sections) vector containing the mean surface of each
section [cm2].

f.flame.sections_mean_s

flame.soot density Returns soot density [g.cm−3s]

f.flame.soot_density

flame.sections dp Returns a (sections) vector containing the primary particles diam-
eter [cm] of each section .

f.flame.sections_dp

flame.sections np Returns a (sections) vector containing the number of primary par-
ticles per aggregate of each section.

f.flame.sections_np

19

7 Examples

Whatever the case, the sooting flame computation always looks the same :

1. Set-up the solution and the flame

2. Enable soot computation

3. Restore the non-sooting flame (computed with the same setup)

4. Solve the sooting flame

Two examples of sooting flames are introduced in the following.

7.1 Burner flame

The first flame is a laminar premixed flat-flame (ISF4 - premixed flame 2). It was exper-
imentally studied by Xu et al. & Menon et al. . The flame is 4 cm long and produced
by a 60mm McKenna burner. Three different equivalent ratios were measured. However,
for this example, the focus will be set on the leanest flame (A). The scripting for both
other flames would be the same, solely the gas composition should be changed. The
charactertics of the flames are summed up in Tab. 7.1.

Flame Equivalence Ratio Φ XC2H4 XO2 XN2 Vin Tin Pin
A 2.34 0.1408 0.1805 0.6787

6.73 cm/s 298 K 1 atmB 2.64 0.1560 0.1773 0.6667
C 2.94 0.17 0.174 0.656

Table 2: Burner flames

7.1.1 Computing the non-sooting flame

The computation of a sooting flame always starts by the computation of the non-sooting
equivalent flame. Eventhough it is theoretically possible to compute a sooting flame from
scratch, the computation will often crash (escpecially because of the retroation of the soot
particles on the gas phase).

The computation of the non-sooting flame is performed the exact same way as in CAN-
TERA 2.3-avbp :

• Import the Cantera library (and the numpy library that is used to load the experi-
mental data)

import cantera as ct

import numpy as np

• Definition of the flame parameters

20

Importing necessary libraries

import cantera as ct

import numpy as np

Setting the mechanism name

mech = 'BIS'

#Setting pressure

pressure = ct.one_atm

Setting temperature

temperature = 298.00

Setting inlet velocity

velocity = 6.73e-2

Setting flame initial composition

composition = 'C2H4:14.08, O2:18.05, N2:67.87'

• Definition of the gas object (through a .cti mechanism file) and its properties (T ,
P , Xspecies)

Creating gas object

gas = ct.Solution('../%s.cti' % mech)

Settng gas properties

gas.TPX = temperature, pressure, composition

• Definition of the flame object (specifying the gas and the domain’s width) and its
properties (ṁ). In our case, the temperature is imposed and the domain’s width
can thus be retrieved in the same file as the temperature :

Loading experimental data (temperature vs. height)

z, T = np.genfromtxt('./T_vs_x.dat').T

Creating flame object of the same size as the experimental flame

f = ct.BurnerFlame(gas=gas, width=z[-1]);

Setting the flame's mass flow rate

f.burner.mdot = velocity * gas.density

• Setting up the computation parameters (energy and transport equations handling,
refining criteria, ...)

Disabling energy equation

f.energy_enabled = False

#Imposing proposed temperature profile

f.flame.set_fixed_temp_profile(z/max(z), T)

21

Setting the transport model to mixture-averaged

f.transport_model = 'Mix'

Setting mesh refinement criteria

f.set_refine_criteria(ratio=2.0, slope=0.1, curve=0.1)

• Running the computation and saving the non-sooting flame in a .xml file

Solving the problem

f.solve(1, 'refine')

Showing the result

f.show_solution()

s

Saving the result

f.save('./RESULTS/%s.xml' % mech, 'non-sooting')

At this moment, a non-sooting flame solution is computed and stored.

7.1.2 Computing the sooting flame

Creating the flame object It is important to keep in mind that the sooting flame
is a different object as the non-sooting flame. Indeed, the solution array is expanded
by the number of sections : one cannot turn a non-sooting flame object into a sooting
flame object. It is thue easoier to compute the sooting flame in a different script as the
non-sooting flame. A benefit is that it is not necessary to compute the non-sooting flame
each time one wants to modify a parameter on the sooting flame. The setup has to be the
same as the one used to compute the non-sooting flame. Especially, Solution and Flame
should be the same except for the number of sections. In order to keep computational
cost reasonnably low, the number of sections will be set to 25.

Importing necessary libraries

import cantera as ct

import numpy as np

Setting the mechanism name

mech = 'BIS'

Creating gas object

gas = ct.Solution('../%s.cti', % mech

)

Loading experimental data (temperature vs. height)

z, T = np.genfromtxt('./T_vs_x.dat').T

Creating flame object of the same size as the experimental flame with

25 soot sections↪→

22

f = ct.BurnerFlame(gas=gas, width=z[-1], sections=25)

Setting transport model

f.transport_model = 'Mix'

Note that some computation parameters such as the inlet mass flow rate, temperature,
pressure, gas composition, the energy equation handling and the refining criteria are stored
in the .xml solution file and do not need to be defined again.

Setting up the soot computation At the moment, the solution array is ready to
compute soot but no information on the sections were given and they are empty. In the
next step, informations will be given to the code on how to build sections and how to
compute soot source terms. Everything takes place is soot setup.

In our case, Bisetti’s mechanism (BIS) is used. This mechanism fits well with a mono-
PAH approach involving Naphtalene (A2). The complete soot chemistry will be activated.
No trash section will be used. soot setup will thus be called as follow :

Setting up soot calculation

f.soot_setup(precursors =['A2'],

retroaction =True,

condensation =True,

coagulation =True,

surface_growth =True,

oxidation =True,

fractal_aggregates=True,

radiation =True,

trash_section =-1)

Computation Once soot module is set-up, it is basically possible to solve the flame
after restoring the non-sooting flame via :

Restoring the non-sooting flame

f.restore('./RESULTS/%s.xml' % mech, 'non-sooting')

Solving the sooting flame

f.solve(1,'disabled')

Two warning messages will be printed :

• one states that the number of species to be restored is smaller than the number of
components of our flame. Indeed, when activating soot, the number of components
was increased by Ns = 25,

23

• the other one concerns soot radiative heat transfers : we decided to compute soot
radiative heat transfers while the energy equation is disabled. Soot radiative heat
transfers won’t thus be computed. In order to compute the soot radiative properties,
energy equation must be activated.

Once the computation is over, the sooting flame can be displayed and saved.

Displaying the result

f.show_solution()

Saving the result

f.save('./RESULTS/%s.xml' % mech,'sooting')

The soot mass fraction is saved for each section at each point in the sooting simulation
on the .xml solution file.

7.1.3 Post-treatment

In this tutorial, post-treatment takes place in a third script. It is strongly recommended
to post-treat the flame in a standalone script in order not to compute the flames each
time the post-treatment is executed.

Creating the flame object and activating the soot module As same as before,
both the Solution and Flame objects must be creates and indentical as the previous ones.

Soot module will also be activated. As the geometrical informations on the sections are not
store in the .xml file, they are recomputed. For the post-treatment to be accurate, they
have to be the same as the ones the comptuation ran with : same precursors (especially
the smallest and biggest ones), same trash section, same collision model. At the moment,
CANTERA-soot is not able to retrieve the number of sections involved in a computation.
Thus, the number of sections must also be the same.

Importing necessary libraries

import cantera as ct

import numpy as np

import matplotlib.pyplot as plt

Setting the mechanism name

mech = 'BIS'

Creating gas object

gas = ct.Solution('../%s.cti' % mech

)

Loading experimental data (temperature vs. height)

z, T = np.genfromtxt('./T_vs_x.dat').T

24

Creating flame object of the same size as the experimental flame with

25 soot sections↪→

f = ct.BurnerFlame(gas=gas, width=z[-1], sections=25)

Setting up soot computation

f.soot_setup(precursors =['A2'],

fractal_aggregates=True,

trash_section =-1

)

Restoring the sooting flame

f.restore('./RESULTS/'+mech+'.xml', 'sooting')

Note that it is not necessary anymore to give the transport model as equations won’t be
solved.

Generating post-treated data At this step, sections have been reconstructed and
the flame object contains the previously computed soot mass fraction in each section.
Python methods have been implemented reconstruct data of interest such as soot volume
fraction, particle size distribution function, etc.

Data can now be plotted thanks to matplotlib.pyplot :

Plot volume fraction

Particles under 2nm and in last section are excluded

plt.figure(0)

plt.plot(f.grid * 100, f.soot_fv(min=2e-7, last=-1))

plt.yscale('log')

plt.ylabel('Volume fraction')

plt.xlabel('HAB (cm)')

Plot particles number density

Particles under 2nm and in last section are excluded

plt.figure(1)

plt.plot(f.grid * 100, f.soot_Np(min=2e-7, last=-1))

plt.yscale('log')

plt.ylabel('Soot particles number density (cm^{-3})')

plt.xlabel('HAB (cm)')

Displaying graphs

plt.show()

In this case, sections which mean diameter is smaller than 2 nm as well as the last section
are excluded.

25

7.2 Impinging jet flame

The impinging jet flame corresponds to the ISF4 laminar premixed flame 6 and was
studied by Rodrigues, Saggese, Li and Abid. This flame consists of a C2H4 / O2-Ar flame
at an equivalence ratio of 2.07, an inlet velocity of 8 cm/s and at atmospheric conditions.
The flame perpendicularly impacts a flat plate which distance from the burner ranges
from 40 mm to 2 cm.

7.2.1 Non-sooting and sooting flames

The preocedure is the very same as before except that the burner flame is replaced by an
impinging jet. As there are several different flames to compute - which takes more time -
the .xml files containig the sooting and non-sooting flames are given at :

./FILES/IMPINGING_JET/RESULTS/

The scripts used to compute these flames are given in Appendix B & C.

The flames were computed with the KM2 mechanism. As shown by Blanquart [1], this
mechanism fits well with pyrene, chrysene, benzo-a-pyrene, benzo-e-pyrene, perylene,
benzo-perylene and coronene as precursors. A lumped-PAH approach will thus be used.

7.2.2 Post-treatment

Soot volume fraction and particle density As opposed to what was done in the
burner flame, measurements are not taken alongside a single flame but at the end of the
flame. Each width thus corresponds to a different flame. That’s why post-treatment will
be slightly different. Evethough this example does not aim at comparing with experimen-
tal data, the post-treatment will be executed as if.

First of all, the flame is set-up and the plotted variables are defined : z is the width of
each flame, fv and Np will respectively be the soot volume fraction and particle number
density at height z.

Importing necessary libraries

import cantera as ct

import numpy as np

import matplotlib.pyplot as plt

Setting mechanism name

mech='KM2'

#Storing flames names and size

widths = {'040':None, '045':None, '055':None, '060':None, '070':None,

'080':None, '100':None, '120':None, '150':None,

'200':None}↪→

26

for k in widths:

widths[k]=float(k) * 1.0e-4

Creating the gas object

gas = ct.Solution('../%s.cti' % mech)

Creating the vectors to be plotted

Stagnation plate height

z = []

Soot volume fraction

fv = []

Soot particle number density

Np = []

Now, the script will loop over all the flames to append the vectors :

for width in widths:

Creating the impinging jet flame with 50 soot sections

f = ct.ImpingingJet(gas=gas, width = widths[width], sections = 50)

Setting up soot computation

f.soot_setup(precursors =['A4', 'CHRYSEN', 'BAPYR',

'BEPYREN', 'PERYLEN', 'BGHIPER', 'CORONEN'],↪→

fractal_aggregates=True,

trash_section =-1)

Restore sooting flame

f.restore('./RESULTS/%s_%s.xml' % (mech, width), 'sooting')

Add the flame's size to the heights vector

z.append(widths[width]*100)

Add the soot volume fraction at outlet to fv

fv.append(f.soot_fv(min=2e-7, last=-1)[-1])

Add the soot particle density at outlet to Np

Np.append(f.soot_Np(min=2e-7, last=-1)[-1])

At this point, z contains the length of each flame while soot fv and soot Np respectively
contain the soot volume fraction and particle density number at the stagnation point. To
plot the data, and compare it with experimental data and previous simulations :

#Plot the results

#fv

fix, (ax0, ax1) = plt.subplots(1, 2, sharex=True)

ax0.plot(z, fv, label='Cantera', color='g')

ax0.set_ylim((1e-10,1e-6))

ax0.set_yscale('log')

27

ax0.set_ylabel('f_v')

ax0.set_xlabel('HAB [cm]')

ax0.grid()

#Np

ax1.plot(z, Np, label='Cantera', color='g')

ax1.set_ylim((1e6,1e12))

ax1.set_yscale('log')

ax1.set_ylabel('N_p [cm^{-3}]')

ax1.set_xlabel('HAB [cm]')

ax1.legend()

ax1.grid()

Displaying graph

plt.show()

PSDF The soot Particles Size Distribution Function can be computed thanks to the
soot psdf method of the FlowBase class. The computed PSDF can thus be plotted for
each flame :

• Same setup as usual

Importing necessary libraries

import cantera as ct

import numpy as np

import matplotlib.pyplot as plt

Setting mechanism name

mech='KM2'

#Storing flames names and size

widths = {'040':None, '045':None, '055':None, '060':None,

'070':None,↪→

'080':None, '100':None, '120':None, '150':None,

'200':None}↪→

for k in widths:

widths[k]=float(k) * 1.0e-4

Creating the gas object

gas = ct.Solution('../%s.cti' % mech)

Creating the plotting area

fig, ax = plt.subplots(2,5,sharex=True,sharey=True,figsize=(12,5))

ax[0,0].set_ylim((1e6,1e13))

ax[0,0].set_xlim((1e-7,1e-5))

ax[0,0].set_yscale('log')

ax[0,0].set_xscale('log')

i=0

28

j=0

k=1

• The PSDF is then plotted for each flame :

for width in widths:

Creating the impinging jet flame with 50 soot sections

f = ct.ImpingingJet(gas=gas, width = widths[width], sections =

50)↪→

Setting up soot computation

f.soot_setup(precursors =['A4', 'CHRYSEN', 'BAPYR',

'BEPYREN', 'PERYLEN', 'BGHIPER', 'CORONEN'],↪→

fractal_aggregates=True,

trash_section =-1)

Restore sooting flame

f.restore('./RESULTS/%s_%s.xml' % (mech, width), 'sooting')

Plot the particle size distribution at each flame's outlet

ax[i,j].plot(f.flame.sections_mean_d,

f.soot_psdf(HAB=widths[width] type='dNp/dlogd'), color='g',

label='Cantera')

↪→

↪→

Mark the flame's size as a title

y = widths[width] * 100

ax[i,j].set_title('H = %.2f cm' % y)

Update next plot's position

if (i>0):

i = 0

j += 1

else:

i+= 1

k += 1

• Finally, the plotting area is finalized

Finalize plotting area

ax0 = fig.add_subplot(111, frameon=False)

ax0.tick_params(labelcolor='none', top=False, bottom=False,

left=False, right=False)↪→

ax0.set_ylabel("$dN_p / d \log (d_m)$ [cm^{-3}]")

ax0.set_xlabel("d_m [cm]")

#Displaying graph

plt.show()

29

A Advanced methods

flame.soot show sections Displays section informations

f.flame.soot_show_sections

flame.soot sections Gets the number of sections

f.flame.soot_sections

Setter is voluntarly not implemented to prevent memory allocation issues.

flame.soot precursors Sets/gets the precursors, called by their name in the mecha-
nism.

f.flame.soot_precursors = list[str]

f.flame.soot_precursors

After setting precursors, sections must be re-built via f.flame.finalize soot.
Getter is not implemented at the moment.

flame.trash section Sets/gets the minimal volume ([cm3]) of the trash section.

f.flame.trash_section = float

f.flame.trash_section

After setting trash section, sections must be re-built via f.flame.finalize soot

flame.soot fractal aggregates Sets/gets whether soot particles are fractal aggregates
(True) or spheres (False).

f.flame.soot_fractal_aggregates = bool

f.flame.soot_fractal_aggregates

After setting aggregates fractality, sections must be re-built via f.flame.finalize soot

flame.soot do retroaction Sets/gets whether retroaction on gas phase is computed
or not.

f.flame.soot_do_retroaction = bool

f.flame.soot_do_retroaction

30

flame.soot do condensation Sets/gets whether condensation is computed or not.

f.flame.soot_do_condensation = bool

f.flame.soot_do_condensation

flame.soot do coagulation Sets/gets whether coagulation is computed or not.

f.flame.soot_do_coagulation = bool

f.flame.soot_do_coagulation

flame.soot do surface growth Sets/gets whether surface growth is computed or not.

f.flame.soot_do_surface_growth = bool

f.flame.soot_do_surface_growth

flame.soot do oxidation Sets/gets whether oxidation is computed or not.

f.flame.soot_do_oxidation = bool

f.flame.soot_do_oxidation

flame.soot do radiation Sets/gets whether soot radiative heat transfers are computed
or not.

f.flame.soot_do_radiation = bool

f.flame.soot_do_radiation

If energy is disabled, soot radiation won’t be computed

31

B Non-sooting impinging jet flame

Importing necessary libraries

import cantera as ct

import numpy as np

Setting the mechanism name

mech = 'KM2'

Setting temperature

T = 473.00

#Setting pressure

P = ct.one_atm

Setting flame initial composition

X = 'C2H4:16.3, O2:23.7, Ar:60.0'

Setting inlet velocity

v = 8.0e-2

Storing each flame's name and width

widths={'040':None, '045':None, '055':None, '060':None, '070':None,

'080':None, '100':None, '120':None, '150':None,

'200':None}↪→

for k in widths:

widths[k]=float(k) * 1.0e-4

Creating the gas object

gas = ct.Solution('../%s.cti' % mech)

for width in widths:

Setting the gas initial state

gas.TPX = T, P , X

Loading experimental data

zexp, Texp, Errexp = np.genfromtxt('./T_vs_z_'+width+'.dat').T

Creating the impinging jet flame

f = ct.ImpingingJet(gas=gas, width = widths[width])

Setting the flame mass flow rate

f.inlet.mdot = v * gas.density

Setting the stagnation plate's temperature

f.surface.T = Texp[-1]

32

Setting transport model

f.transport_model = 'Mix'

Setting mesh refinement criteria

f.set_refine_criteria(ratio=2.0, slope=0.2, curve=0.2)

Setting initial flame

f.set_initial_guess(products='equil')

Enablig radiative heat losses

f.radiation_enabled = True

Solving the flame

f.solve(loglevel=1, refine_grid='refine')

Displaying the solution

f.show_solution()

Saving the flame

f.save('./RESULTS/'+mech+'_'+width+'.xml','non-sooting')

33

C Sooting impinging jet flame

Importing necessary libraries

import cantera as ct

import numpy as np

Setting the mechanism name

mech = 'KM2'

Setting temperature

T = 473.00

#Setting pressure

P = ct.one_atm

Setting flame initial composition

X = 'C2H4:16.3, O2:23.7, Ar:60.0'

Setting inlet velocity

v = 8.0e-2

Storing each flame's name and width

widths={'040':None, '045':None, '055':None, '060':None, '070':None,

'080':None, '100':None, '120':None, '150':None,

'200':None}↪→

for k in widths:

widths[k]=float(k) * 1.0e-4

Creating the gas object

gas = ct.Solution('../%s.cti' % mech)

for width in widths:

Creating the impinging jet flame with 50 soot sections

f = ct.ImpingingJet(gas=gas, width = widths[width], sections=50)

Activating radiation

f.radiation_enabled = True

Setting up soot compuation

f.soot_setup(precursors =['A4', 'CHRYSEN', 'BAPYR',

'BEPYREN', 'PERYLEN', 'BGHIPER', 'CORONEN'],↪→

retroaction =True,

condensation =True,

coagulation =True,

surface_growth =True,

oxidation =True,

fractal_aggregates=True,

radiation =True,

34

trash_section =-1)

Restoring the non-sooting flame

f.restore('./RESULTS/%s_%s.xml' % (mech, width), 'non-sooting')

Solving the sooting flame

f.solve(1,'disabled')

Displaying the solution

f.show_solution()

Saving the sooting flame

f.save('./RESULTS/%s_%s.xml' % (mech, width), 'sooting')

D About dNp/d log(dm)

Let the particle density number of section k : Nsoot,k [cm−3] be :

Nsoot,k = qk log
V max
k

V min
k

(53)

Where qk is the volume density of volume fraction relative to section k and Vk are the
maximal and minimal volumes of section k. Volumes might be written as :

Vk =
1

6dkSk
(54)

With dk and Sk the corresponding diameter and section. Section is then written in therms
of the fractal relation for soot :

Sk
SC2

=

(
Vk
VC2

) θ
3

(55)

Using both last equations, volume can be rewritten as :

V =

 SC2

6V
θ
3
C2

 3
3−θ

d
3

3−θ (56)

Rexpressing Nsoot,k :

Nsoot,k =
3

3− θ
qk log

(
dmaxk

dmink

)
(57)

dNp might then be interpreted as the increase in soot particle density thanks to each
section, leading to :

dNpk = Nsoot,k (58)

Approximating the mobility diameter as the section mean diameter, d log(dm)k gives :

d log(dm)k = log(dmaxk)− log(dmink) = log

(
dmaxk

dmink

)
(59)

35

The discrete approximation of the derivative is straightforward :

dNp

d log(dm)
k =

3

3− θ
qk (60)

Using the definiton of qk leads to the result.

Another approach consists in using the identity :

dNp

d log(dm)
= dm

dNp

ddm
(61)

Which can be discretized at section k as :

dNp

d log(dm)
k = dmeank

Nsoot,k

dmaxk − dmink

(62)

This formula give the same results as the previous one.

36

References

[1] G Blanquart and Pitsch H. Combustion Generated Fine Carbonaceous Particles:
Proceedings of an International Workshop held in Villa Orlandi, Anacapri, May,
chapter A joint volume-surface-hydrogen multi-variate model for soot formation. In
[2], 2007.

[2] H Bockhorn, A D’Anna, A F Sarofim, and H Wang. Combustion Generated Fine Car-
bonaceous Particles: Proceedings of an International Workshop held in Villa Orlandi,
Anacapri, May. 2007.

[3] CERFACS. Cerfacs chemistry website, 2020. [Online; accessed 25-February-2020].

[4] B. V. Derjaguin, A. I. Storozhilova, and Ya I. Rabinovich. Experimental verification
of the theory of thermophoresis of aerosol particles. Journal of Colloid And Interface
Science, 21(1):35–58, 1966.

[5] Paul S Epstein. On the Resistante Experienced by Spheres. (July):710–733, 1923.

[6] Fabian Mauss, Karl Netzell, and Harry Lehtiniemi. Aspects of modeling soot for-
mation in turbulent diffusion flames. Combustion Science and Technology, 178(10-
11):1871–1885, 2006.

[7] Fabian Mauss, Thomas Schäfer, and Henning Bockhorn. Inception and growth of
soot particles in dependence on the surrounding gas phase. Combustion and Flame,
99(3-4):697–705, 1994.

[8] Michael F. Modest. Radiative Heat Transfer (Third Edition). 2013.

[9] Michael Edward Mueller, Guillaume Blanquart, and Heinz Pitsch. A joint volume-
surface model of soot aggregation with the method of moments. Proceedings of the
Combustion Institute, 32 I(1):785–792, 2009.

[10] University of Adelaide. Isf 4 workshop, 2020. [Online; accessed 25-February-2020].

[11] Pedro Rodrigues. Modélisation multiphysique de flammes turbulentes suitées avec la
prise en compte des transferts radiatifs et des transferts de chaleur pariétaux. 2018.

[12] Kermit C. Smyth and Christopher R. Shaddix. The Elusive History of m=1.157 -
0.56i for the Refractive Index of Soot. Combustion and Flame, 1(107):314–320, 1996.

[13] F. Xu, A. M. El-Leathy, C. H. Kim, and G. M. Faeth. Soot surface oxidation in
hydrocarbon/air diffusion flames at atmospheric pressure. Combustion and Flame,
132(1-2):43–57, 2003.

37

	Introduction
	Presentation
	Installation

	Sectional method
	Population Balance Equation
	Volumes creation

	Transport equation
	Convective fluxes
	Diffusive fluxes
	Thermophoresis

	Radiative heat transfers
	Source terms
	Dimerization
	Nucleation
	Condensation
	Coagulation
	Surface chemistry

	API
	Pre-treatment
	Treatment
	Post-treatment

	Examples
	Burner flame
	Computing the non-sooting flame
	Computing the sooting flame
	Post-treatment

	Impinging jet flame
	Non-sooting and sooting flames
	Post-treatment

	Advanced methods
	Non-sooting impinging jet flame
	Sooting impinging jet flame
	About dNp/dlog(dm)
	Bibliography

