This repository has been archived by the owner on Mar 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim.py
134 lines (101 loc) · 4.39 KB
/
sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import matplotlib.pyplot as plt
from stl import mesh
import numpy as np
def magnitude(vector):
sum = 0
for column in np.array(vector):
for x in column:
sum += x ** 2
return np.sqrt(sum)
def normalize(vector):
return vector / magnitude(vector)
class Triangle:
def __init__(self, point1, point2, point3):
self.point1 = point1
self.point2 = point2
self.point3 = point3
self.vector1 = normalize(point2 - point1)
self.vector2 = normalize(point3 - point1)
self.normal = normalize(np.cross(self.vector1, self.vector2))
self.vector3 = normalize(point2 - point3)
class Ball:
def __init__(self, radius, mass, position=np.matrix([0.0, 0.0, 0.0]), velocity=np.matrix([0.0, 0.0, 0.0])):
self.radius = radius
self.mass = mass
self.position = position
self.velocity = velocity
def offset(self, triangle):
return np.dot(np.array(self.position)[0], np.array(triangle.normal)[0]) - np.dot(np.array(triangle.point1)[0], np.array(triangle.normal)[0])
def collision(self, triangle):
offset = self.offset(triangle)
if abs(offset) > self.radius:
return None
position = self.position - triangle.normal * offset
edges = [triangle.vector2, -triangle.vector1, triangle.vector3]
offsets = [position - triangle.point1, position -
triangle.point2, position - triangle.point3]
for i, edge in enumerate(edges):
if np.dot(np.cross(np.array(offsets[i])[0], np.array(edge)[0]), np.array(triangle.normal)[0]) <= 0:
return None
return position
if __name__ == "__main__":
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.set_xlim(-5, 5)
ax.set_ylim(-5, 5)
ax.set_zlim(-5, 5)
scene_x = []
scene_y = []
scene_z = []
triangles = []
scene = mesh.Mesh.from_file("scene.stl")
scale = 0.001
for triangle in scene.vectors:
for point in triangle:
scene_x.append(point[0] * scale)
scene_y.append(point[1] * scale)
scene_z.append(point[2] * scale)
triangles.append(Triangle(np.matrix([scene_x[-3], scene_y[-3], scene_z[-3]]), np.matrix(
[scene_x[-2], scene_y[-2], scene_z[-2]]), np.matrix([scene_x[-1], scene_y[-1], scene_z[-1]])))
ax.scatter(scene_x, scene_y, scene_z, s=1, c="b")
ball = Ball(0.0065, 0.0065, np.matrix(
[0.9, 0.0, 1.0]), np.matrix([0.0, -1.0, 0.0]))
dt = 0.001
coefficient_of_restitution = 0.658
rolling_resistance_coefficient = 0.15
x_points = []
y_points = []
z_points = []
time = 0
while time <= 30:
if np.array(ball.position)[0][2] < -5:
break
ball.velocity += np.matrix([0.0, 0.0, -9.81]) * dt
for triangle in triangles:
collision = ball.collision(triangle)
if collision is not None:
ball.velocity += triangle.normal * np.dot(np.array(ball.velocity)
[0], np.array(triangle.normal)[0]) * -(1 + coefficient_of_restitution)
normal_force = np.dot(np.array(triangle.normal)[
0], np.array([0, 0, 1])) * ball.mass * 9.81
rolling_resistance = normal_force * rolling_resistance_coefficient
planar_velocity = ball.velocity - \
np.dot(np.array(triangle.normal)[0], np.array(ball.velocity)[0])
planar_velocity_direction = normalize(planar_velocity)
rolling_resistance_direction = -planar_velocity_direction
rolling_resistance_dv = rolling_resistance_direction * \
rolling_resistance / ball.mass * dt
ball.velocity += rolling_resistance_dv
break
ball.position += ball.velocity * dt
time += dt
print(f"{time}, {ball.position}, {ball.velocity}")
current_position = np.array(ball.position)[0]
x_points.append(current_position[0])
y_points.append(current_position[1])
z_points.append(current_position[2])
ax.scatter(x_points, y_points, z_points, s=1, c="g")
plt.show()