diff --git a/cif_pow.dic b/cif_pow.dic index 68f9853..9d93889 100644 --- a/cif_pow.dic +++ b/cif_pow.dic @@ -14,7 +14,7 @@ data_CIF_POW _dictionary.title CIF_POW _dictionary.class Instance _dictionary.version 2.5.0 - _dictionary.date 2023-01-23 + _dictionary.date 2023-01-29 _dictionary.uri https://raw.githubusercontent.com/COMCIFS/Powder_Dictionary/master/cif_pow.dic _dictionary.ddl_conformance 3.11.10 @@ -131,8 +131,8 @@ save_PD_BLOCK ; _pd_block.id is used to assign a unique ID code to a data block. This code is then used for references between different blocks - (see _pd_block_diffractogram.id, _pd_qpa_ext_std.block_id - and _pd_phase_block.id). + (see _pd_block_diffractogram.id, _pd_qpa_external_std.block_id + and _pd_phase.block_id). Note that a data block may contain only a single diffraction data set or information about a single crystalline phase. @@ -648,11 +648,11 @@ save_pd_calib.std_internal_mass_percent _definition.id '_pd_calib.std_internal_mass_percent' _definition_replaced.id 1 - _definition_replaced.by '_pd_qpa_int_std.mass_percent' + _definition_replaced.by '_pd_qpa_internal_std.mass_percent' _definition.update 2023-01-06 _description.text ; - This item is deprecated. Please see _pd_qpa_int_std.mass_percent. + This item is deprecated. Please see _pd_qpa_internal_std.mass_percent. Per cent presence of the internal standard specified by the data item _pd_calib.std_internal_name expressed as 100 times @@ -674,11 +674,11 @@ save_pd_calib.std_internal_mass_percent_su _definition.id '_pd_calib.std_internal_mass_percent_su' _definition_replaced.id 1 - _definition_replaced.by '_pd_qpa_int_std.mass_percent_su' + _definition_replaced.by '_pd_qpa_internal_std.mass_percent_su' _definition.update 2023-01-06 _description.text ; - This item is deprecated. Please see _pd_qpa_int_std.mass_percent_su. + This item is deprecated. Please see _pd_qpa_internal_std.mass_percent_su. Standard uncertainty of _pd_calib.std_internal_mass_percent. ; @@ -5884,8 +5884,8 @@ save_pd_phase_mass.percent Total mass of the phase expressed as a percentage of the total mass of the specimen. - If _pd_qpa_int_std.mass_percent or _pd_qpa_ext_std.k_factor is - present, the values given are assumed to be in absolute terms. + If _pd_qpa_internal_std.mass_percent or _pd_qpa_external_std.k_factor + is present, the values given are assumed to be in absolute terms. The value of the mass percent given to the internal standard represents the total crystalline contribution of that standard. @@ -7497,18 +7497,415 @@ save_pd_proc.number_of_points save_ -save_PD_QPA_EXT_STD +save_PD_QPA_CALIB_FACTOR - _definition.id PD_QPA_EXT_STD + _definition.id PD_QPA_CALIB_FACTOR _definition.scope Category - _definition.class Loop - _definition.update 2023-01-06 + _definition.class Set + _definition.update 2023-01-15 + _description.text +; + This category gives the value of the calibration constant by which the + calculated intensity or scale factor associated with the given phase is + divided by in order to allow quantitative phase analysis to be undertaken. + Further normalisation may be necessary, and can be indicated. + + For a description of the quantification methodologies below, and a review on + quantitative phase analysis in general, see Chapter 3.9 of International + Tables, Vol. H, and references therein. +; + _name.category_id PD_GROUP + _name.object_id PD_QPA_CALIB_FACTOR + _category_key.name '_pd_qpa_calib_factor.phase_id' + +save_ + +save_pd_qpa_calib_factor.absorption_diffraction + + _definition.id '_pd_qpa_calib_factor.absorption_diffraction' + _definition.update 2023-01-22 + _description.text +; + A absorption-diffraction calibration value associated with the given phase + which allows quantitative phase analysis to be undertaken. + + A description of the associated quantification procedure can be found in + the equivalent enumeration in _pd_qpa_overall.method. +; + _name.category_id pd_qpa_calib_factor + _name.object_id absorption_diffraction + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_calib_factor.absorption_diffraction_su + + _definition.id + '_pd_qpa_calib_factor.absorption_diffraction_su' + _definition.update 2023-01-22 + _description.text +; + Standard uncertainty of _pd_qpa_calib_factor.absorption_diffraction. +; + _name.category_id pd_qpa_calib_factor + _name.object_id absorption_diffraction_su + _name.linked_item_id '_pd_qpa_calib_factor.absorption_diffraction' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_pd_qpa_calib_factor.DDM + + _definition.id '_pd_qpa_calib_factor.DDM' + _definition.update 2023-01-22 + _description.text +; + A Direct-Derivation Methodology (DDM) calibration value associated with the + given phase which allows quantitative phase analysis to be undertaken. + + A description of the associated quantification procedure can be found in + the equivalent enumeration in _pd_qpa_overall.method. +; + _name.category_id pd_qpa_calib_factor + _name.object_id DDM + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_calib_factor.DDM_su + + _definition.id '_pd_qpa_calib_factor.DDM_su' + _definition.update 2023-01-22 + _description.text +; + Standard uncertainty of _pd_qpa_calib_factor.DDM. +; + _name.category_id pd_qpa_calib_factor + _name.object_id DDM_su + _name.linked_item_id '_pd_qpa_calib_factor.DDM' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_pd_qpa_calib_factor.external_standard + + _definition.id '_pd_qpa_calib_factor.external_standard' + _definition.update 2023-01-22 + _description.text +; + A external standard calibration value associated with the given phase which + allows quantitative phase analysis to be undertaken. + + If the external standard approach is used, the use of PD_EXTERNAL_STD data + items is preferred. + + A description of the associated quantification procedure can be found in + the equivalent enumeration in _pd_qpa_overall.method. +; + _name.category_id pd_qpa_calib_factor + _name.object_id external_standard + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_calib_factor.external_standard_su + + _definition.id '_pd_qpa_calib_factor.external_standard_su' + _definition.update 2023-01-22 + _description.text +; + Standard uncertainty of _pd_qpa_calib_factor.external_standard. +; + _name.category_id pd_qpa_calib_factor + _name.object_id external_standard_su + _name.linked_item_id '_pd_qpa_calib_factor.external_standard' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_pd_qpa_calib_factor.I_over_Ic + + _definition.id '_pd_qpa_calib_factor.I_over_Ic' + _definition.update 2023-01-22 + _description.text +; + A Reference Intensity Ratio (RIR) calibration value associated with the + given phase which allows quantitative phase analysis to be undertaken. + + This ratio must have been calculated with respect to corundum; for other + reference materials, please use _pd_qpa_calib_factor.RIR. + + A description of the associated quantification procedure can be found in + the equivalent enumeration in _pd_qpa_overall.method. +; + _name.category_id pd_qpa_calib_factor + _name.object_id I_over_Ic + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_calib_factor.I_over_Ic_su + + _definition.id '_pd_qpa_calib_factor.I_over_Ic_su' + _definition.update 2023-01-22 + _description.text +; + Standard uncertainty of _pd_qpa_calib_factor.I_over_Ic. +; + _name.category_id pd_qpa_calib_factor + _name.object_id I_over_Ic_su + _name.linked_item_id '_pd_qpa_calib_factor.I_over_Ic' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_pd_qpa_calib_factor.other + + _definition.id '_pd_qpa_calib_factor.other' + _definition.update 2023-01-24 + _description.text +; + A calibration value associated with the given phase which allows + quantitative phase analysis to be undertaken. + + The type of data this value represents must be given in + _pd_qpa_calib_factor.special_details. + + A description of the associated quantification procedure must be given in + _pd_qpa_overall.method. + + When this data item is used in many phases present in the same + diffractogram, the person creating the CIF file must ensure that they are + have consistent definitions. +; + _name.category_id pd_qpa_calib_factor + _name.object_id other + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_calib_factor.other_su + + _definition.id '_pd_qpa_calib_factor.other_su' + _definition.update 2023-01-22 + _description.text +; + Standard uncertainty of _pd_qpa_calib_factor.other. +; + _name.category_id pd_qpa_calib_factor + _name.object_id other_su + _name.linked_item_id '_pd_qpa_calib_factor.other' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_pd_qpa_calib_factor.phase_id + + _definition.id '_pd_qpa_calib_factor.phase_id' + _definition.update 2023-01-15 + _description.text +; + The phase (see _pd_phase.id) to which the calibration factor applies. +; + _name.category_id pd_qpa_calib_factor + _name.object_id phase_id + _name.linked_item_id '_pd_phase.id' + _type.purpose Link + _type.source Related + _type.container Single + _type.contents Text + +save_ + +save_pd_qpa_calib_factor.PONKCS + + _definition.id '_pd_qpa_calib_factor.PONKCS' + _definition.update 2023-01-22 + _description.text +; + A PONKCS calibration value associated with the given phase which allows + quantitative phase analysis to be undertaken. + + This value, when coupled with the peak intensities for which it was + calibrated, forms a pseudo-ZMV value, and can also be used in + quantification with the ZMV algorithm. + + A description of the associated quantification procedure can be found in + the equivalent enumeration in _pd_qpa_overall.method. +; + _name.category_id pd_qpa_calib_factor + _name.object_id PONKCS + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_calib_factor.PONKCS_su + + _definition.id '_pd_qpa_calib_factor.PONKCS_su' + _definition.update 2023-01-22 + _description.text +; + Standard uncertainty of _pd_qpa_calib_factor.PONKCS. +; + _name.category_id pd_qpa_calib_factor + _name.object_id PONKCS_su + _name.linked_item_id '_pd_qpa_calib_factor.PONKCS' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_pd_qpa_calib_factor.RIR + + _definition.id '_pd_qpa_calib_factor.RIR' + _definition.update 2023-01-22 + _description.text +; + A Reference Intensity Ratio (RIR) calibration value associated with the + given phase which allows quantitative phase analysis to be undertaken. + + This ratio must NOT have been calculated with respect to corundum; for RIR + values calculated with corundum, please use _pd_qpa_calib_factor.I_over_IC. + + Details of the reference material against which this RIR was determined + should be given in _pd_qpa_calib_factor.special_details. + + A description of the associated quantification procedure can be found in + the equivalent enumeration in _pd_qpa_overall.method. +; + _name.category_id pd_qpa_calib_factor + _name.object_id RIR + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_calib_factor.RIR_su + + _definition.id '_pd_qpa_calib_factor.RIR_su' + _definition.update 2023-01-22 _description.text ; - This category identifies the external standard used for - quantitative phase analysis. Loops may be used for calibration - information that differs by detector channel, otherwise only a - single value should be recorded per diffractogram. + Standard uncertainty of _pd_qpa_calib_factor.RIR. +; + _name.category_id pd_qpa_calib_factor + _name.object_id RIR_su + _name.linked_item_id '_pd_qpa_calib_factor.RIR' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_pd_qpa_calib_factor.special_details + + _definition.id '_pd_qpa_calib_factor.special_details' + _definition.update 2023-01-15 + _description.text +; + Description of calibration factor details that require additional detail, + or cannot otherwise be recorded using other PD_QPA_CALIB_FACTOR data items. +; + _name.category_id pd_qpa_calib_factor + _name.object_id special_details + _type.purpose Describe + _type.source Recorded + _type.container Single + _type.contents Text + +save_ + +save_pd_qpa_calib_factor.ZMV + + _definition.id '_pd_qpa_calib_factor.ZMV' + _definition.update 2023-01-22 + _description.text +; + A ZMV calibration value associated with the given phase which allows + quantitative phase analysis to be undertaken. + + If this value is not given, please ensure that _cell.volume and either + _cell.atomic_mass or the atoms in the unit cell are given in an ATOM_TYPE + list, to allow for the correct calculation of ZMV. + + A description of the associated quantification procedure can be found in + the equivalent enumeration in _pd_qpa_overall.method. +; + _name.category_id pd_qpa_calib_factor + _name.object_id ZMV + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_calib_factor.ZMV_su + + _definition.id '_pd_qpa_calib_factor.ZMV_su' + _definition.update 2023-01-22 + _description.text +; + Standard uncertainty of _pd_qpa_calib_factor.ZMV. +; + _name.category_id pd_qpa_calib_factor + _name.object_id ZMV_su + _name.linked_item_id '_pd_qpa_calib_factor.ZMV' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_PD_QPA_EXTERNAL_STD + + _definition.id PD_QPA_EXTERNAL_STD + _definition.scope Category + _definition.class Set + _definition.update 2023-01-15 + _description.text +; + This category identifies the external diffractogram used for + quantitative phase analysis. Quantification by external standard is typically carried out using the O'Connor and Raven algorithm in conjunction with whole- @@ -7521,18 +7918,14 @@ save_PD_QPA_EXT_STD Chapter 3.9 of International Tables, Vol. H, and references therein. ; _name.category_id PD_GROUP - _name.object_id PD_QPA_EXT_STD - - loop_ - _category_key.name - '_pd_qpa_ext_std.detector_id' - '_pd_qpa_ext_std.block_id' + _name.object_id PD_QPA_EXTERNAL_STD + _category_key.name '_pd_qpa_external_std.diffractogram_id' save_ -save_pd_qpa_ext_std.block_id +save_pd_qpa_external_std.diffractogram_block_id - _definition.id '_pd_qpa_ext_std.block_id' + _definition.id '_pd_qpa_external_std.diffractogram_block_id' _definition.update 2023-01-09 _description.text ; @@ -7543,8 +7936,8 @@ save_pd_qpa_ext_std.block_id Further references to additional phases present are given in that data block. ; - _name.category_id pd_qpa_ext_std - _name.object_id block_id + _name.category_id pd_qpa_external_std + _name.object_id diffractogram_block_id _name.linked_item_id '_pd_block.id' _type.purpose Link _type.source Assigned @@ -7553,31 +7946,28 @@ save_pd_qpa_ext_std.block_id save_ -save_pd_qpa_ext_std.detector_id +save_pd_qpa_external_std.diffractogram_id - _definition.id '_pd_qpa_ext_std.detector_id' - _definition.update 2016-10-18 + _definition.id '_pd_qpa_external_std.diffractogram_id' + _definition.update 2023-01-15 _description.text ; - A code which identifies the detector or channel number to which - the external standard data applies. Note that this code should - match a detector from _pd_meas.detector_id and may be omitted if - only one detector is used. + The diffractogram (see _pd_diffractogram.id) which is being used to + calculate the diffractometer constant. ; - _name.category_id pd_qpa_ext_std - _name.object_id detector_id - _name.linked_item_id '_pd_meas.detector_id' + _name.category_id pd_qpa_external_std + _name.object_id diffractogram_id + _name.linked_item_id '_pd_diffractogram.id' _type.purpose Link - _type.source Assigned + _type.source Related _type.container Single - _type.contents Code - _enumeration.default . + _type.contents Text save_ -save_pd_qpa_ext_std.k_factor +save_pd_qpa_external_std.k_factor - _definition.id '_pd_qpa_ext_std.k_factor' + _definition.id '_pd_qpa_external_std.k_factor' _definition.update 2023-01-06 _description.text ; @@ -7598,7 +7988,7 @@ save_pd_qpa_ext_std.k_factor Refinement Procedure in Assaying Powdered Mixtures. Powder Diffraction, 3(1), 2-6. doi:10.1017/s0885715600013026 ; - _name.category_id pd_qpa_ext_std + _name.category_id pd_qpa_external_std _name.object_id k_factor _type.purpose Measurand _type.source Derived @@ -7608,32 +7998,32 @@ save_pd_qpa_ext_std.k_factor save_ -save_pd_qpa_ext_std.k_factor_su +save_pd_qpa_external_std.k_factor_su - _definition.id '_pd_qpa_ext_std.k_factor_su' + _definition.id '_pd_qpa_external_std.k_factor_su' _definition.update 2022-12-01 _description.text ; - Standard uncertainty of _pd_qpa_ext_std.k_factor. + Standard uncertainty of _pd_qpa_external_std.k_factor. ; - _name.category_id pd_qpa_ext_std + _name.category_id pd_qpa_external_std _name.object_id k_factor_su - _name.linked_item_id '_pd_qpa_ext_std.k_factor' + _name.linked_item_id '_pd_qpa_external_std.k_factor' _units.code none _import.get [{'file':templ_attr.cif 'save':general_su}] save_ -save_pd_qpa_ext_std.phase_id +save_pd_qpa_external_std.phase_id - _definition.id '_pd_qpa_ext_std.phase_id' + _definition.id '_pd_qpa_external_std.phase_id' _definition.update 2022-12-03 _description.text ; The phase (see _pd_phase.id) used as the external standard. ; - _name.category_id pd_qpa_ext_std + _name.category_id pd_qpa_external_std _name.object_id phase_id _name.linked_item_id '_pd_phase.id' _type.purpose Link @@ -7643,73 +8033,178 @@ save_pd_qpa_ext_std.phase_id save_ -save_pd_qpa_ext_std.phase_name +save_pd_qpa_external_std.special_details - _definition.id '_pd_qpa_ext_std.phase_name' - _definition.update 2023-01-07 + _definition.id '_pd_qpa_external_std.special_details' + _definition.update 2023-01-03 _description.text ; - Identifies the name of the material used as an external standard for - quantitative phase analysis. This should match the value given in - _pd_phase.name in the data block containing the calibration diffractogram. + Description of external standard details that cannot otherwise + be recorded using other PD_QPA_EXT_STD data items ; - _name.category_id pd_qpa_ext_std - _name.object_id phase_name + _name.category_id pd_qpa_external_std + _name.object_id special_details _type.purpose Describe - _type.source Assigned + _type.source Recorded _type.container Single _type.contents Text save_ -save_pd_qpa_ext_std.special_details +save_PD_QPA_INTENSITY_FACTOR - _definition.id '_pd_qpa_ext_std.special_details' - _definition.update 2023-01-03 + _definition.id PD_QPA_INTENSITY_FACTOR + _definition.scope Category + _definition.class Loop + _definition.update 2023-01-22 _description.text ; - Description of external standard details that cannot otherwise - be recorded using other PD_QPA_EXT_STD data items + This category gives the value of the intensity or scale factor which is + divided by the corresponding calibration factor in order to allow + quantitative phase analysis to be undertaken. Further normalisation may be + necessary, and can be indicated. + + The supported methodologies are enumerated in _pd_qpa_overall.method. + + For a review on quantitative phase analysis, see Chapter 3.9 of + International Tables, Vol. H, and references therein. ; - _name.category_id pd_qpa_ext_std - _name.object_id special_details - _type.purpose Describe - _type.source Recorded + _name.category_id PD_GROUP + _name.object_id PD_QPA_INTENSITY_FACTOR + + loop_ + _category_key.name + '_pd_qpa_intensity_factor.diffractogram_id' + '_pd_qpa_intensity_factor.phase_id' + +save_ + +save_pd_qpa_intensity_factor.diffractogram_id + + _definition.id '_pd_qpa_intensity_factor.diffractogram_id' + _definition.update 2023-01-15 + _description.text +; + The diffractogram (see _pd_diffractogram.id) to which the intensity factor + relates. +; + _name.category_id pd_qpa_intensity_factor + _name.object_id diffractogram_id + _name.linked_item_id '_pd_diffractogram.id' + _type.purpose Link + _type.source Related + _type.container Single + _type.contents Text + +save_ + +save_pd_qpa_intensity_factor.phase_id + + _definition.id '_pd_qpa_intensity_factor.phase_id' + _definition.update 2023-01-22 + _description.text +; + The phase (see _pd_phase.id) to which the intensity factor applies. +; + _name.category_id pd_qpa_intensity_factor + _name.object_id phase_id + _name.linked_item_id '_pd_phase.id' + _type.purpose Link + _type.source Related _type.container Single _type.contents Text save_ -save_PD_QPA_INT_STD +save_pd_qpa_intensity_factor.value + + _definition.id '_pd_qpa_intensity_factor.value' + _definition.update 2023-01-22 + _description.text +; + An intensity or scale factor value associated with the given phase and + diffractogram, which, when divided by the appropriate calibration value + defined in _pd_qpa_calib_factor.*, allows quantitative phase analysis to be + undertaken. + + This value is not, in general, transferable between different program types + and versions, as each software package may incorporate different constants + or normalisations into their calculations. However, if all values for a + given diffractogram are self-consistent, then quantification is able to be + undertaken. + + A description of the associated quantification procedure can be found in + the equivalent enumeration in _pd_qpa_overall.method. +; + _name.category_id pd_qpa_intensity_factor + _name.object_id value + _type.purpose Measurand + _type.source Derived + _type.container Single + _type.contents Real + _units.code none + +save_ + +save_pd_qpa_intensity_factor.value_su + + _definition.id '_pd_qpa_intensity_factor.value_su' + _definition.update 2023-01-22 + _description.text +; + Standard uncertainty of _pd_qpa_intensity_factor.value. +; + _name.category_id pd_qpa_intensity_factor + _name.object_id value_su + _name.linked_item_id '_pd_qpa_intensity_factor.value' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_PD_QPA_INTERNAL_STD - _definition.id PD_QPA_INT_STD + _definition.id PD_QPA_INTERNAL_STD _definition.scope Category _definition.class Set - _definition.update 2023-01-06 + _definition.update 2023-01-16 _description.text ; This category identifies the internal standard used for quantitative phase analysis. - Quantification by internal standard is typically carried out - using the Hill and Howard algorithm in conjunction with whole- - pattern Rietveld modelling, with the results being scaled to - match the included internal standard. The use of an internal - standard allows for the calculation of absolute mass fractions, - giving an indication of amorphous content. + Quantification by internal standard can be carried out by a variety + of different methods, including the Reference Intensity Ratio or the + Hill & Howard algorithm in conjunction with whole-pattern Rietveld + modelling. + + In general, the use of an internal standard converts relative phase + mass percentages into absolute mass percentage, allowing determination + of the 'unknown' (or 'amorphous', 'noncrystalline', or 'unanalysed') + fraction of the specimen. + + This can be done as + + W~p~^abs.^ = W~p~^rel.^ * (W~s~^known^ / W~s~^rel.^) + + where p and s represent the analyte phase and standard phase, respectively, + W is the weight fraction, 'abs.' is absolute, 'rel.' is relative, and + 'known' is the known addition. Here, W~s~^rel.^ is the relative amount of + standard as calculated by the quantification algorithm. For a review on quantitative phase analysis, see Chapter 3.9 of International Tables, Vol. H, and references therein. ; _name.category_id PD_GROUP - _name.object_id PD_QPA_INT_STD + _name.object_id PD_QPA_INTERNAL_STD save_ -save_pd_qpa_int_std.block_id +save_pd_qpa_internal_std.block_id - _definition.id '_pd_qpa_int_std.block_id' - _definition.update 2023-01-09 + _definition.id '_pd_qpa_internal_std.block_id' + _definition.update 2023-01-16 _description.text ; Identifies the _pd_block.id of the phase used as an internal @@ -7718,9 +8213,9 @@ save_pd_qpa_int_std.block_id The data block containing the crystallographic information for this phase will be identified with a _pd_block.id code matching the - code in _pd_qpa_int_std.block_id + code in _pd_qpa_internal_std.block_id ; - _name.category_id pd_qpa_int_std + _name.category_id pd_qpa_internal_std _name.object_id block_id _name.linked_item_id '_pd_block.id' _type.purpose Link @@ -7730,98 +8225,125 @@ save_pd_qpa_int_std.block_id save_ -save_pd_qpa_int_std.mass_percent +save_pd_qpa_internal_std.crystallinity_percent - _definition.id '_pd_qpa_int_std.mass_percent' - _alias.definition_id '_pd_calib_std_internal_mass_%' - _definition.update 2023-01-03 + _definition.id '_pd_qpa_internal_std.crystallinity_percent' + _definition.update 2023-01-23 _description.text ; - Per cent presence of the internal standard specified by the - data item _pd_calib.std_internal_name expressed as 100 times - the mass of standard added divided by the sum of the mass of - standard added and the original sample mass. + Per cent crystallinity of the internal standard. + + Materials are rarely 100% crystalline as the crystal structure at the + material's surface is able to relax, and/or contain reaction products. This + thin, disordered surface layer can account for several mass percent of the + standard, and, as such, can affect any resultant quantification based on the + standard. - This value does not take into account the crystallinity of the - internal standard. That is, if 1 g of a 90% crystalline internal - standard is added to 3 g of sample, the - _pd_calib.std_internal_mass_percent is 25%. + Knowledge of the internal standard crystallinity allows for the known mass + addition to be corrected to a crystalline addition, which is the addition + being analysed in a diffraction experiment. ; - _name.category_id pd_qpa_int_std - _name.object_id mass_percent + _name.category_id pd_qpa_internal_std + _name.object_id crystallinity_percent _type.purpose Measurand _type.source Derived _type.container Single _type.contents Real _enumeration.range 0.0:100.0 + _enumeration.default 100.0 _units.code none save_ -save_pd_qpa_int_std.mass_percent_su +save_pd_qpa_internal_std.crystallinity_percent_su - _definition.id '_pd_qpa_int_std.mass_percent_su' - _definition.update 2023-01-03 + _definition.id + '_pd_qpa_internal_std.crystallinity_percent_su' + _definition.update 2023-01-23 _description.text ; - Standard uncertainty of _pd_qpa_int_std.mass_percent. + Standard uncertainty of _pd_qpa_internal_std.crystallinity_percent. ; - _name.category_id pd_qpa_int_std - _name.object_id mass_percent_su - _name.linked_item_id '_pd_qpa_int_std.mass_percent' + _name.category_id pd_qpa_internal_std + _name.object_id crystallinity_percent_su + _name.linked_item_id '_pd_qpa_internal_std.crystallinity_percent' _units.code none _import.get [{'file':templ_attr.cif 'save':general_su}] save_ -save_pd_qpa_int_std.phase_id +save_pd_qpa_internal_std.mass_percent - _definition.id '_pd_qpa_int_std.phase_id' - _definition.update 2022-12-03 + _definition.id '_pd_qpa_internal_std.mass_percent' + _alias.definition_id '_pd_calib_std_internal_mass_%' + _definition.update 2023-01-16 _description.text ; - The phase (see _pd_phase.id) used as the internal standard. + Per cent presence of the internal standard expressed as 100 times the mass + of standard added divided by the sum of the mass of standard added and the + original sample mass. + + This value does not take into account the crystallinity of the internal + standard. That is, if 1 g of a 90% crystalline internal standard is added + to 3 g of sample, the _pd_qpa_internal_std.mass_percent is 25%. ; - _name.category_id pd_qpa_int_std - _name.object_id phase_id - _name.linked_item_id '_pd_phase.id' - _type.purpose Link - _type.source Related + _name.category_id pd_qpa_internal_std + _name.object_id mass_percent + _type.purpose Measurand + _type.source Derived _type.container Single - _type.contents Text + _type.contents Real + _enumeration.range 0.0:100.0 + _units.code none save_ -save_pd_qpa_int_std.phase_name +save_pd_qpa_internal_std.mass_percent_su - _definition.id '_pd_qpa_int_std.phase_name' - _definition.update 2023-01-07 + _definition.id '_pd_qpa_internal_std.mass_percent_su' + _definition.update 2023-01-16 _description.text ; - Identifies the name of the material used as an internal standard for - quantitative phase analysis. This should match the value given in - _pd_phase.name in the data block containing the calibration diffractogram. + Standard uncertainty of _pd_qpa_internal_std.mass_percent. ; - _name.category_id pd_qpa_int_std - _name.object_id phase_name - _type.purpose Describe - _type.source Assigned + _name.category_id pd_qpa_internal_std + _name.object_id mass_percent_su + _name.linked_item_id '_pd_qpa_internal_std.mass_percent' + _units.code none + + _import.get [{'file':templ_attr.cif 'save':general_su}] + +save_ + +save_pd_qpa_internal_std.phase_id + + _definition.id '_pd_qpa_internal_std.phase_id' + _definition.update 2023-01-16 + _description.text +; + The phase (see _pd_phase.id) used as the internal standard. +; + _name.category_id pd_qpa_internal_std + _name.object_id phase_id + _name.linked_item_id '_pd_phase.id' + _type.purpose Link + _type.source Related _type.container Single _type.contents Text save_ -save_pd_qpa_int_std.special_details +save_pd_qpa_internal_std.special_details - _definition.id '_pd_qpa_int_std.special_details' - _definition.update 2023-01-03 + _definition.id '_pd_qpa_internal_std.special_details' + _definition.update 2023-01-16 _description.text ; Description of internal standard details that cannot otherwise - be recorded using other PD_QPA_INT_STD data items + be recorded using other PD_QPA_INTERNAL_STD data items ; - _name.category_id pd_qpa_int_std + _name.category_id pd_qpa_internal_std _name.object_id special_details _type.purpose Describe _type.source Recorded @@ -7830,165 +8352,288 @@ save_pd_qpa_int_std.special_details save_ -save_PD_QPA_RIR +save_PD_QPA_OVERALL - _definition.id PD_QPA_RIR + _definition.id PD_QPA_OVERALL _definition.scope Category _definition.class Set - _definition.update 2023-01-06 + _definition.update 2023-01-16 _description.text ; - This category identifies the reference intensity ratio used for - quantitative phase analysis. - - The reference intensity ratio (RIR) is an instrument-independent phase - constant developed for use in quantitative phase analysis and is - defined as the ratio of the most intense peak of phase, p, to the - most intense peak of a reference material, s. - - The generally accepted reference material is corundum due to its - relatively simple diffraction pattern, stability, and availability - as a highly crystalline and pure single phase. Additionally, the - unknown and reference materials are generally accepted to be mixed - in a 50:50 mass ratio. If corundum is used, the RIR equates to I/Ic - (or 'I over I corundum') for the phase; these are the most commonly - reported values in the literature. - - When applied in conjunction with the matrix-flushing method, quantitative - phase analysis is able to be undertaken without the presence of a - reference material. In this case, the sum of the mass fractions is - normalised to 100%. - - The weight fraction of phase p, W_p, is given by - - W_p = [I_p / (RIR_p * I_p,rel)] / Sum_k[I_k / (RIR_k * I_k,rel)] - - where I_p is the intensity of the analyte peak of phase p, I_P,rel - is the ratio between the analyte peak and the most intense peak for - phase p, and RIR_p is the reference intensity ratio for phase p. - The sum is taken over all phases present in the specimen. + This category gives the overall information about the quantitative phase + analysis methodology applied to a given diffractogram. For a review on quantitative phase analysis, see Chapter 3.9 of International Tables, Vol. H, and references therein. ; _name.category_id PD_GROUP - _name.object_id PD_QPA_RIR + _name.object_id PD_QPA_CALIB_FACTOR + _category_key.name '_pd_qpa_overall.diffractogram_id' save_ -save_pd_qpa_rir.special_details +save_pd_qpa_overall.diffractogram_id - _definition.id '_pd_qpa_rir.special_details' - _definition.update 2023-01-03 + _definition.id '_pd_qpa_overall.diffractogram_id' + _definition.update 2023-01-16 _description.text ; - Description of RIR details that cannot otherwise - be recorded using other PD_QPA_RIR data items. + A diffractogram ID code (see _pd_diffractogram.id) identifying the + diffractogram to which the quantitative phase analysis information relates. + + The diffractogram will be identified by a _pd_diffractogram.id code matching + the code in _pd_qpa_overall.diffractogram_id. ; - _name.category_id pd_qpa_rir - _name.object_id special_details - _type.purpose Describe - _type.source Recorded + _name.category_id pd_qpa_overall + _name.object_id diffractogram_id + _name.linked_item_id '_pd_diffractogram.id' + _type.purpose Link + _type.source Related _type.container Single _type.contents Text save_ -save_pd_qpa_rir.std_block_id +save_pd_qpa_overall.method - _definition.id '_pd_qpa_rir.std_block_id' - _definition.update 2023-01-09 + _definition.id '_pd_qpa_overall.method' + _definition.update 2023-01-24 _description.text ; - Identifies the _pd_block.id of the diffractogram used to determine - the reference intensity ratio. + The type of quantification method applied to the given diffractogram. - Further references to additional phases present are given in - that data block. + This data item allows the origin of the values of _pd_phase_mass.percent + to be determined. Additionally, it allows for the proper interpretation + of any _pd_qpa_calib_factor.value that is given. + + If 'other' is chosen, further information must be given in + _pd_qpa_overall.special_details ; - _name.category_id pd_qpa_rir - _name.object_id std_block_id - _name.linked_item_id '_pd_block.id' - _type.purpose Link - _type.source Assigned + _name.category_id pd_qpa_overall + _name.object_id method + _type.purpose State + _type.source Recorded _type.container Single - _type.contents Text + _type.contents Code -save_ + loop_ + _enumeration_set.state + _enumeration_set.detail + absorption_diffraction +; + Quantitative phase analysis was undertaken following the + absorption-diffraction methodology methodology [1]. -save_pd_qpa_rir.std_phase_id + The absolute weight fraction of phase p, W~p~, is given by - _definition.id '_pd_qpa_rir.std_phase_id' - _definition.update 2022-12-03 - _description.text + W~p~ = [I~p~ / C~p~] * \mu^*^~m~ + + where I~p~ is the intensity of the analyte peak, \mu^*^~m~ is the mass + absorption coefficient of the entire specimen, and C~p~ is a previously + determined calibration constant which depends on the data collection + conditions and the nature of the phase being calibrated. Intensities + from unknown specimens must be collected under the same conditions as + the calibration was determined, or normalised to match. + + _pd_char.mass_atten_coef_mu_calc or _pd_char.mass_atten_coef_mu_obs + must be given for the specimen in each diffractogram. + + The values utilised for I~p~ and C~p~ can be recorded using + _pd_qpa_intensity_factor.value and + _pd_qpa_calib_factor.absorption_diffraction, respectively. + + [1] Klug, H.P. & Alexander, L.E. (1974). X-Ray Diffraction Procedures: + For Polycrystalline and Amorphous Materials. New York: Wiley. pp. + 532-534. ; - The phase (see _pd_phase.id) used as the internal standard in - the determination of the reference intensity ratio. + DDM ; - _name.category_id pd_qpa_rir - _name.object_id phase_id - _name.linked_item_id '_pd_phase.id' - _type.purpose Link - _type.source Related - _type.container Single - _type.contents Text + Quantitative phase analysis was undertaken following the Direct + Derivation Method [1-6]. -save_ + The relative weight fraction of phase p, W~p~, is given by -save_pd_qpa_rir.value + W~p~ = (I~p~ / C~p~) / Sum(I~k~ / C~k~, k=1:P) - _definition.id '_pd_qpa_rir.value' - _definition.update 2023-01-03 - _description.text + where I~p~ is the integrated, Lp-normalised intensity of the analyte + phase over the entire diffractogram. The sum is taken over all phases + present. C~p~ is given by + + C~p~ = (1/M~p~) * Sum(n~i,p~^2^, i=1:N~p~) + + where M~p~ is the chemical formula weight of phase p, n~i,p~ is the + number of electrons belonging to the i^th^ atom of phase p, and N~p~ is + the number of atoms in the formula unit of phase p. + + The values utilised for I~p~ and C~p~ can be recorded using + _pd_qpa_intensity_factor.value and _pd_qpa_calib_factor.DDM, + respectively. + + [1] Toraya, H. (2016). J. Appl. Crystallogr. 49, 1508-1516. + [2] Toraya, H. (2017). J. Appl. Crystallogr. 50, 820-829. + [3] Toraya, H. (2017). J. Appl. Crystallogr. 50, 665-665. + [4] Toraya, H. (2018). J. Appl. Crystallogr. 51, 446-455. + [5] Toraya, H. (2019). J. Appl. Crystallogr. 52, 520-531. + [6] Toraya, H. & Omote, K. (2019). J. Appl. Crystallogr. 52, 13-22. +; + external_standard ; - The value of the reference intensity ratio to be used in - quantitative phase analysis, as described by Hubbard et al., 1976, - Hubbard & Snyder, 1988, and Snyder & Bish, 1989. + Quantitative phase analysis was undertaken following the external + standard methodology [1] to quantify absolute phase fractions taken + from Rietveld [2] refinements. + + The absolute weight fraction of phase p, W~p~, is given by + + W~p~ = [I~p~ / C~p~] * \mu^*^~m~ - The weight fraction of phase p, W_p is given by + where I~p~ = S~p~/K, where S~p~ is the Rietveld scale factor of the + analyte phase and K is a previously determined diffractometer constant. + \mu^*^~m~ is the mass absorption coefficient of the entire specimen. + C~p~ is given as - W_p = [I_p / (RIR_p * I_p,rel)] / Sum_k[I_k / (RIR_k * I_k,rel)] + C~p~ = 1 /(Z * M * V)~p~ - where I_p is the intensity of the analyte peak of phase p, I_P,rel - is the ratio between the analyte peak and the most intense peak for - phase p, and RIR_p is the reference intensity ratio for phase p. - The sum is taken over all phases present in the specimen. + where Z is the number of formula units per unit cell, M is the chemical + formula weight, and V is the volume of the unit cell, all of phase p. - Hubbard, C. R., Evans, E. H. & Smith, D. K. (1976). The reference - intensity ratio, I/Ic, for computer simulated powder patterns. J. Appl. - Cryst. 9, 169-174. + _pd_char.mass_atten_coef_mu_calc or _pd_char.mass_atten_coef_mu_obs + must be given for the specimen in each diffractogram. - Hubbard, C. R. & Snyder, R. L. (1988). RIR - measurement and use in - quantitative XRD. Powder Diffr. 3, 74-77. + The values utilised for I~p~ and C~p~ can be recorded using + _pd_qpa_intensity_factor.value and + _pd_qpa_calib_factor.external_standard, respectively, however, data + items from the PD_QPA_EXTERNAL_STANDARD category should be + preferentially used. - Snyder, R. L. & Bish, D. L. (1989). In Modern Powder Diffraction, edited - by D. L. Bish & J. E. Post, pp. 101-142. Washington DC: Mineralogical - Society of America. + [1] O'Connor, B. H. & Raven, M. D. (1988). Powder Diffr. 3, 2-6. + [2] Rietveld, H. M. (1969). J. Appl. Crystallogr. 2, 65-71. +; + I/Ic +; + A Reference Intensity Ratio (RIR) in the specific case where the RIR + value was determined using corundum (\a-alumina) as the standard, and + the mass ratio of the standard and analyte phases was 50:50. + + For a description of the RIR methodology, see the entry for the 'RIR'. + + The values utilised for I~p~ and C~p~ can be recorded using + _pd_qpa_intensity_factor.value and _pd_qpa_calib_factor.I_over_Ic, + respectively. +; + PONKCS +; + Quantitative phase analysis was undertaken following the Partial Or No + Known Crystal Structure methodology [1]. + + The relative weight fraction of phase p, W~p~, is given by + + W~p~ = (S~p~ / C~p~) / Sum(S~k~ / C~k~, k=1:P) + + where S~p~ is the Rietveld scale factor of the analyte phase. The sum + is taken over all phases present, and + + C~p~ = (W~s~/W~p~) * (S~p~/S~s~) * (1/(ZMV)~s~) + + where W is the weight fraction, S is the Rietveld scale factor, Z is + the number of formula units per unit cell, M is the chemical + formula weight, and V is the volume of the unit cell. The subscript p + denotes the analyte phase, and s denotes the standard phase. + + The intensities of the peaks assigned to the PONKCS phase, when taken + in combination with C~p~, act as pseudo-F_squared values. Because of + this, once a particular phase has been calibrated, it's value of C~p~ + is consistent with ZMV values and can be used in conjunction with the + ZMV algorithm with normal, crystalline phases to quantify relative + phase fractions in mixtures containing this phase. + + If any phase in an analysis of a diffractogram uses the PONKCS + approach, the entire quantification is to be marked as 'PONKCS', and + all phases should define _pd_qpa_calib_factor.value. + + The values utilised for I~p~ and C~p~ can be recorded using + _pd_qpa_intensity_factor.value and _pd_qpa_calib_factor.PONKCS, + respectively. + + [1] Scarlett, N.V.Y. & Madsen, I.C. (2006). Powder Diffr. 21, 278-284. +; + RIR +; + For an RIR value made with reference to corundum, see the state + 'I/Ic'. + + Quantitative phase analysis was undertaken following the Reference + Intensity Ratio methodology [1]. + + The method of determining the RIR value, and the particular standard + against which it was calculated should be given in the + _pd_qpa_calib_factor.special_details for each phase. + + The relative weight fraction of phase p, W~p~, is given by + + W~p~ = [I~p~ / C~p~] / Sum[I~k~ / C~k~, k=1:P] + + where I~p~=I~p~^'^/I~p,rel~, where I~p~^'^ is the intensity of the + analyte peak of phase p and I~P,rel~ is the intensity ratio between the + analyte peak and the most intense peak for phase p. The sum is taken + over all phases present in the specimen. C~p~ is the reference + intensity ratio for phase p, must be pre-calculated with a known, + crystalline internal standard, as + + C~p~ = (W~s~/W~p~) * (I~p~^'^/I~s~^'^) * (I~s,rel~/(I~p,rel~) + + The values utilised for I~p~ and C~p~ can be recorded using + _pd_qpa_intensity_factor.value and _pd_qpa_calib_factor.RIR, + respectively. + + [1] Snyder, R. L. (1992). Powder Diffr. 7, 186-192. +; + ZMV +; + Quantitative phase analysis was undertaken following the ZMV + algorithm [1-2] in conjunction with Rietveld [3] refinements. + + The relative weight fraction of phase p, W~p~, is given by + + W~p~ = (S~p~ / C~p~) / Sum(S~k~ / C~k~, k=1:P) + + where S~p~ is the Rietveld scale factor of the analyte phase. The sum + is taken over all phases present, and + + C~p~ = 1/(Z * M * V)~p~ + + where Z is the number of formula units per unit cell, M is the chemical + formula weight, and V is the volume of the unit cell, all of phase p. + + The values utilised for I~p~ and C~p~ can be recorded using + _pd_qpa_intensity_factor.value and _pd_qpa_calib_factor.ZMV, + respectively. + + [1] Hill,R.J. & Howard, C.J. (1987). J. Appl. Crystallogr. 20, 467-474. + [1] Bish,D.L. & Howard, S.A. (1988). J. Appl. Crystallogr. 21, 86-91. + [2] Rietveld, H. M. (1969). J. Appl. Crystallogr. 2, 65-71. +; + other +; + Please give details in _pd_qpa_overall.special_details. ; - _name.category_id pd_qpa_rir - _name.object_id value - _type.purpose Measurand - _type.source Derived - _type.container Single - _type.contents Real - _units.code none save_ -save_pd_qpa_rir.value_su +save_pd_qpa_overall.special_details - _definition.id '_pd_qpa_rir.value_su' - _definition.update 2023-01-03 + _definition.id '_pd_qpa_overall.special_details' + _definition.update 2023-01-16 _description.text ; - Standard uncertainty of _pd_qpa_rir.value. + Description of overall QPA details that require additional detail, + or cannot otherwise be recorded using other PD_QPA_OVERALL data items. ; - _name.category_id pd_qpa_rir - _name.object_id value_su - _name.linked_item_id '_pd_qpa_rir.value' - _units.code none - - _import.get [{'file':templ_attr.cif 'save':general_su}] + _name.category_id pd_qpa_overall + _name.object_id special_details + _type.purpose Describe + _type.source Recorded + _type.container Single + _type.contents Text save_ @@ -8467,7 +9112,7 @@ save_ Deprecated _pd_refln.wavelength_id after consultation with PDDMG. ; - 2.5.0 2023-01-23 + 2.5.0 2023-01-29 ; ## Retain above version number and increment date until final ## release @@ -8507,17 +9152,14 @@ save_ Made PD_PHASE a Set category. - Created PD_QPA_EXT_STD and PD_QPA_INT_STD to record quantitative - phase analysis by the external and internal standard approaches. - - Created PD_QPA_RIR to record quantitative phase analysis by - the reference intensity ratio approach. + Created PD_QPA_EXTERNAL_STD and PD_QPA_INTERNAL_STD to record + quantitative phase analysis by the external and internal standard + approaches. Changed _pd_meas.step_count_time and _pd_meas.time_of_flight from Integer to Real. - Update definitions of _pd_phase.name, _pd_qpa_ext_std.phase_name, and - _pd_qpa_int_std.phase_name to better represent their contents. + Update definitions of _pd_phase.name to better represent their contents. Created PD_AMORPHOUS. @@ -8530,6 +9172,9 @@ save_ Updated data items to hold block ID values to be of type Link, and to link them formally to _pd_block.id + Created PD_QPA_OVERALL to record details about the overall quantitative + phase analysis method. + Update description of _pd_proc.info_datetime to maintain consistency with its Set category. @@ -8538,6 +9183,8 @@ save_ Updated _pd_phase.name. + Created PD_QPA_INTENSITY_FACTOR. + Updated description of _pd_calibration.conversion_eqn. Updated descriptions of PD_CHAR, PD_PREP, and PD_SPEC to clarify