-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathModules.py
472 lines (406 loc) · 17.4 KB
/
Modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import tensorflow as tf;
import Hyper_Parameters as hp;
from ZoneoutLSTMCell import ZoneoutLSTMCell
from Location_Sensitive_Attention import Location_Sensitive_Attention;
from tensorflow.contrib.seq2seq import Helper, AttentionWrapper;
from tensorflow.python.util import nest
from tensorflow.python.ops import rnn, control_flow_util, variable_scope
from tensorflow.python.framework.tensor_shape import TensorShape
from tensorflow.contrib.seq2seq.python.ops.basic_decoder import BasicDecoder
from tensorflow.contrib.seq2seq.python.ops.decoder import Decoder
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_util
from collections import namedtuple
def Encoder_Embedding(inputs):
embedding_Variable = tf.get_variable(
name = "embedding_variable",
shape = [hp.Encoder.Embedding.Token_Size, hp.Encoder.Embedding.Embedding_Size],
dtype = tf.float32
)
new_Tensor = tf.nn.embedding_lookup(embedding_Variable, inputs);
return new_Tensor;
def Encoder_Conv(inputs, is_training = False):
new_Tensor = inputs;
for index in range(hp.Encoder.Conv.Nums):
with tf.variable_scope('conv_{}'.format(index)):
new_Tensor = tf.layers.conv1d(
inputs= new_Tensor,
filters= hp.Encoder.Conv.Channel,
kernel_size= hp.Encoder.Conv.Kernel_Size,
strides= hp.Encoder.Conv.Stride,
padding= 'same',
activation= tf.nn.relu
)
new_Tensor = tf.layers.batch_normalization(
new_Tensor,
training= is_training
)
new_Tensor = tf.layers.dropout(
new_Tensor,
rate= hp.Encoder.Conv.Dropout_Rate,
training= is_training
)
return new_Tensor;
def Encoder_BiLSTM(inputs, lengths, is_training = False):
cell_List_Dict = {
'Forward': [],
'Backward': []
}
for index in range(hp.Encoder.BiLSTM.Nums):
for direction in ['Forward', 'Backward']:
with tf.variable_scope('bilstmcell_{}_{}'.format(index, direction.lower())):
cell_List_Dict[direction].append(ZoneoutLSTMCell(
num_units= hp.Encoder.BiLSTM.Cell_Size,
is_training= is_training,
cell_zoneout_rate= hp.Encoder.BiLSTM.Zoneout_Rate,
output_zoneout_rate= hp.Encoder.BiLSTM.Zoneout_Rate
))
with tf.variable_scope('bilstm'):
new_Tensor, _, _ = tf.contrib.rnn.stack_bidirectional_dynamic_rnn(
cells_fw= cell_List_Dict['Forward'],
cells_bw= cell_List_Dict['Backward'],
inputs= inputs,
dtype= tf.float32,
sequence_length= lengths,
)
return new_Tensor
def Decoder_LSTM(inputs, sequence_length, attention_mechanism, is_training= False):
'''
In inference, input and sequence_length will be ignoired.
'''
cell_List = [];
for index in range(hp.Decoder.LSTM.Nums):
cell_List.append(ZoneoutLSTMCell(
num_units= hp.Decoder.LSTM.Cell_Size,
is_training= is_training,
cell_zoneout_rate= hp.Decoder.LSTM.Zoneout_Rate,
output_zoneout_rate= hp.Decoder.LSTM.Zoneout_Rate
))
lstm_Cell = tf.nn.rnn_cell.MultiRNNCell(cell_List);
attention_Wrapped_Cell = AttentionWrapper(
cell= lstm_Cell,
attention_mechanism= attention_mechanism,
attention_layer_size=None,
alignment_history=True,
cell_input_fn=None,
output_attention= False,
initial_cell_state=None,
name=None,
attention_layer=None
)
helper = Decoder_Helper(
inputs= inputs, #Mel
sequence_length= sequence_length, #Mel_length
time_major= False,
is_training= is_training,
name= None
)
decoder = Decoder_Decoder(
cell= attention_Wrapped_Cell,
helper= helper,
initial_state= attention_Wrapped_Cell.zero_state(tf.shape(inputs)[0], tf.float32)
)
final_outputs, final_state, _ = Decoder_Dynamic_Decode(
decoder= decoder,
impute_finished= False #True
)
return final_outputs, final_state
def Decoder_Conv(inputs, is_training = False):
new_Tensor = inputs;
for index in range(hp.Decoder.Conv.Nums):
with tf.variable_scope('conv_{}'.format(index)):
new_Tensor = tf.layers.conv1d(
inputs= new_Tensor,
filters= hp.Decoder.Conv.Channel if index < hp.Decoder.Conv.Nums - 1 else hp.Sound.Mel_Dim,
kernel_size= hp.Decoder.Conv.Kernel_Size,
strides= hp.Decoder.Conv.Stride,
padding= 'same',
activation= tf.nn.tanh
)
new_Tensor = tf.layers.batch_normalization(
new_Tensor,
training= is_training
)
new_Tensor = tf.layers.dropout(
new_Tensor,
rate= hp.Encoder.Conv.Dropout_Rate,
training= is_training
)
return new_Tensor;
#nest.map_structure: 입력을 tensor들의 list나 dict으로 받고, 모든 element에 대해 function을 수행한 후 같은 구조체 형태로 반환
#TensorArray.read(x): Dim 0의 x번째를 indexing함(ex: array[5,3,7]일때 x=3이라면, array[3,:,:]를 반환)
class Decoder_Helper(Helper):
def __init__(
self,
inputs,
sequence_length,
time_major= False,
is_training= False,
name= None
):
self._inputs = inputs;
self._sequence_length = tf.convert_to_tensor(sequence_length, name="sequence_length")
if self._sequence_length.get_shape().ndims != 1:
raise ValueError(
"Expected sequence_length to be a vector, but received shape: %s" %
self._sequence_length.get_shape()
)
self.time_major = time_major;
self.is_training = is_training;
self._batch_size = tf.shape(self._inputs)[0];
if not time_major:
inputs = rnn._transpose_batch_time(inputs);
self._zero_inputs = tf.zeros_like(inputs[0, :])
self._input_tas = tf.TensorArray(
dtype=inputs.dtype,
size=tf.shape(inputs)[0],
element_shape=inputs.get_shape()[1:]
).unstack(inputs)
def initialize(self, name= None):
initial_finished = tf.tile([False], [self._batch_size])
initial_inputs = tf.zeros([self._batch_size, hp.Sound.Mel_Dim]) #A zero array is inserted at first time.
prenet_vector = self.prenet(initial_inputs)
context_vector = tf.zeros(shape=[self.batch_size, hp.Encoder.BiLSTM.Cell_Size * 2 + hp.Speaker_Embedding.Embedding_Size])
initial_inputs = tf.concat([prenet_vector, context_vector], axis=-1)
return (initial_finished, initial_inputs)
@property
def inputs(self):
return self._inputs
@property
def sequence_length(self):
return self._sequence_length
@property
def batch_size(self):
return self._batch_size
@property
def sample_ids_shape(self):
return tensor_shape.TensorShape([])
@property
def sample_ids_dtype(self):
return tf.int32
def sample(self, time, outputs, name=None, **unused_kwargs):
with tf.name_scope(name, "HelperSample", [time, outputs]):
sample_ids = tf.cast(tf.argmax(outputs, axis=-1), tf.int32)
return sample_ids
def next_inputs(self, time, logits, stop_logits, state, name= None):
next_finished = tf.cond(
self.is_training,
true_fn= lambda: tf.greater_equal(time, self._sequence_length),
false_fn=lambda: tf.logical_or(
tf.squeeze(tf.greater_equal(stop_logits, 0.0), axis=-1),
tf.greater_equal(time, hp.Decoder.LSTM.Max_Inference_Length)
)
)
next_inputs = tf.cond(
self.is_training,
true_fn= lambda: tf.cond(
tf.reduce_all(next_finished),
true_fn=lambda: self._zero_inputs,
false_fn=lambda: self._input_tas.read(time)
),
false_fn= lambda: logits
)
prenet_vector = self.prenet(next_inputs)
context_vector = state.attention
next_inputs = tf.concat([prenet_vector, context_vector], axis=-1)
next_state = state
return (next_finished, next_inputs, next_state)
def prenet(self, inputs):
new_Tensor = inputs
for index in range(hp.Decoder.PreNet.Nums):
with tf.variable_scope('prenet_{}'.format(index), reuse=variable_scope.AUTO_REUSE):
new_Tensor = tf.layers.dense(
inputs= new_Tensor,
units= hp.Decoder.PreNet.Size,
activation= tf.nn.relu
)
if hp.Decoder.PreNet.Use_Dropout:
new_Tensor = tf.layers.dropout(
inputs= new_Tensor,
rate= hp.Decoder.PreNet.Dropout_Rate,
training= True
)
return new_Tensor
class Decoder_Output(namedtuple('Decoder_Output', ('linear', 'stop'))):
pass
class Decoder_Decoder(BasicDecoder):
def __init__(
self,
cell,
helper,
initial_state
):
super(Decoder_Decoder, self).__init__(
cell=cell,
helper=helper,
initial_state=initial_state
)
@property
def output_size(self):
return Decoder_Output(
linear= TensorShape([hp.Sound.Mel_Dim]),
stop= TensorShape([1]) #Current, it is hard code
)
@property
def output_dtype(self):
return Decoder_Output(
linear= tf.float32,
stop= tf.float32
)
def step(self, time, inputs, state, name= None):
with tf.name_scope(name, "DecoderStep", (time, inputs, state)):
batch_size = tf.shape(inputs)[0]
cell_outputs, cell_state = self._cell(inputs, state);
context = cell_state.attention
cell_outputs = tf.concat([cell_outputs, context], axis=-1)
logits, stop_logits = self.projection(cell_outputs)
finished, next_inputs, next_state = self._helper.next_inputs(
time= time,
logits= logits,
stop_logits= stop_logits,
state= cell_state
)
outputs = Decoder_Output(
linear= logits,
stop= stop_logits
)
return outputs, next_state, next_inputs, finished
def projection(self, inputs):
with tf.variable_scope('linear_projection', reuse=variable_scope.AUTO_REUSE):
new_Tensor = tf.layers.dense(
inputs= inputs,
units= hp.Sound.Mel_Dim + 1
)
mel_Logits, stop_Logits = tf.split(
new_Tensor,
num_or_size_splits=[hp.Sound.Mel_Dim, 1],
axis=-1
)
return mel_Logits, stop_Logits
def Decoder_Dynamic_Decode(
decoder,
output_time_major= False,
impute_finished= False,
maximum_iterations= None,
parallel_iterations= 32,
swap_memory= False,
scope= None
):
if not isinstance(decoder, Decoder):
raise TypeError("Expected decoder to be type Decoder, but saw: %s" % type(decoder))
with variable_scope.variable_scope(scope, "decoder") as varscope:
ctxt = tf.get_default_graph()._get_control_flow_context() # pylint: disable=protected-access
is_xla = control_flow_util.GetContainingXLAContext(ctxt) is not None
in_while_loop = control_flow_util.GetContainingWhileContext(ctxt) is not None
if not context.executing_eagerly() and not in_while_loop:
if varscope.caching_device is None:
varscope.set_caching_device(lambda op: op.device)
if maximum_iterations is not None:
maximum_iterations = tf.convert_to_tensor(
maximum_iterations,
dtype=tf.int32,
name="maximum_iterations"
)
if maximum_iterations.get_shape().ndims != 0:
raise ValueError("maximum_iterations must be a scalar")
elif is_xla:
raise ValueError("maximum_iterations is required for XLA compilation.")
initial_finished, initial_inputs, initial_state = decoder.initialize()
if maximum_iterations is not None:
initial_finished = tf.logical_or(
initial_finished,
0 >= maximum_iterations
)
initial_sequence_lengths = tf.zeros_like(initial_finished, dtype=tf.int32)
initial_time = tf.constant(0, dtype=tf.int32)
def _shape(batch_size, from_shape):
if (not isinstance(from_shape, TensorShape) or from_shape.ndims == 0):
return TensorShape(None)
else:
batch_size = tensor_util.constant_value(tf.convert_to_tensor(batch_size, name="batch_size"))
return TensorShape([batch_size]).concatenate(from_shape)
dynamic_size = maximum_iterations is None or not is_xla
def _create_ta(s, d):
return tf.TensorArray(
dtype=d,
size= 0 if dynamic_size else maximum_iterations,
dynamic_size= dynamic_size,
element_shape= _shape(decoder.batch_size, s)
)
initial_outputs_ta = nest.map_structure(
_create_ta,
decoder.output_size,
decoder.output_dtype
)
def condition(
unused_time,
unused_outputs_ta,
unused_state,
unused_inputs,
finished,
unused_sequence_lengths
):
return tf.logical_not(tf.reduce_all(finished))
def body(
time,
outputs_ta,
state,
inputs,
finished,
sequence_lengths
):
next_outputs, next_state, next_inputs, decoder_finished = decoder.step(time, inputs, state)
if decoder.tracks_own_finished:
next_finished = decoder_finished
else:
next_finished = tf.logical_or(decoder_finished, finished)
next_finished = tf.reshape(next_finished, [-1]) #reshape이유 1: helper에서 cond에 들어가면 merge가 됨, 2: inference시에 2차원 값이 나옴
next_sequence_lengths = tf.where(
tf.logical_not(finished),
x= tf.fill(tf.shape(sequence_lengths), time + 1),
y= sequence_lengths
)
nest.assert_same_structure(state, next_state)
nest.assert_same_structure(outputs_ta, next_outputs)
nest.assert_same_structure(inputs, next_inputs)
if impute_finished:
new_linear = nest.map_structure(
lambda out, zero: tf.where(finished, zero, out),
next_outputs.linear,
tf.zeros_like(next_outputs.linear)
)
next_outputs._replace(linear= new_linear)
def _maybe_copy_state(new, cur):
if isinstance(cur, tf.TensorArray):
pass_through = True
else:
new.set_shape(cur.shape)
pass_through = (new.shape.ndims == 0)
return new if pass_through else tf.where(finished, cur, new)
next_state = nest.map_structure(_maybe_copy_state, next_state, state)
outputs_ta = nest.map_structure(lambda ta, out: ta.write(time, out), outputs_ta, next_outputs)
return time + 1, outputs_ta, next_state, next_inputs, next_finished, next_sequence_lengths
res = tf.while_loop(
cond= condition,
body= body,
loop_vars=[
initial_time,
initial_outputs_ta,
initial_state,
initial_inputs,
initial_finished,
initial_sequence_lengths
],
parallel_iterations=parallel_iterations,
maximum_iterations=maximum_iterations,
swap_memory=swap_memory
)
final_outputs_ta, final_state, final_sequence_lengths = res[1], res[2], res[5]
final_outputs = nest.map_structure(lambda ta: ta.stack(), final_outputs_ta)
try:
final_outputs, final_state = decoder.finalize(final_outputs, final_state, final_sequence_lengths)
except NotImplementedError:
pass
if not output_time_major:
final_outputs = nest.map_structure(rnn._transpose_batch_time, final_outputs)
return final_outputs, final_state, final_sequence_lengths