-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathLogger.py
81 lines (76 loc) · 3.3 KB
/
Logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
import matplotlib
class Logger(SummaryWriter):
def add_scalar_dict(self, scalar_dict, global_step= None, walltime= None):
for tag, scalar in scalar_dict.items():
self.add_scalar(
tag= tag,
scalar_value= scalar,
global_step= global_step,
walltime= walltime
)
self.flush()
def add_image_dict(self, image_dict, global_step, walltime= None):
for tag, (data, size, aspect, x_limit, y_limit, c_limit) in image_dict.items():
fig= plt.figure(figsize= size or (10, 5), dpi= 100)
if data.ndim == 1:
plt.imshow([[0]], aspect=aspect, origin='lower', cmap= matplotlib.colors.ListedColormap(['white']))
plt.plot(data)
plt.margins(x= 0)
if not x_limit is None:
plt.xlim(*x_limit)
if not y_limit is None:
plt.ylim(*y_limit)
elif data.ndim == 2:
plt.imshow(data, aspect=aspect, origin='lower')
if not x_limit is None:
plt.xlim(*x_limit)
if not y_limit is None:
plt.ylim(*y_limit)
if not c_limit is None:
plt.clim(*c_limit)
elif data.ndim == 3 and data.shape[2] in [3, 4]: #RGB or RGBA
plt.imshow(data, aspect=aspect, origin='lower')
if not x_limit is None:
plt.xlim(*x_limit)
if not y_limit is None:
plt.ylim(*y_limit)
if not c_limit is None:
plt.clim(*c_limit)
plt.colorbar()
plt.title(tag)
plt.tight_layout()
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
self.add_image(tag= tag, img_tensor= data, global_step= global_step, walltime= walltime, dataformats= 'HWC')
self.flush()
def add_audio_dict(self, audio_dict, global_step, walltime= None):
for tag, (data, sample_rate) in audio_dict.items():
if data.ndim == 1:
data = np.expand_dims(data, 0)
self.add_audio(
tag= tag,
snd_tensor= data,
global_step= global_step,
sample_rate= sample_rate,
walltime= walltime
)
self.flush()
def add_histogram_model(self, model, model_label= None, global_step=None, bins='tensorflow', walltime=None, max_bins=None, delete_keywords= []):
for tag, parameter in model.named_parameters():
tag = '/'.join([x for x in tag.split('.') if not x in delete_keywords])
if not model_label is None:
tag = '{}/{}'.format(model_label, tag)
self.add_histogram(
tag= tag,
values= parameter.data.cpu().numpy(),
global_step= global_step,
bins= bins,
walltime= walltime,
max_bins= max_bins
)
self.flush()