-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathAudio.py
52 lines (40 loc) · 1.31 KB
/
Audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
from scipy import signal
import librosa
def Audio_Prep(path, sample_rate, trim_top_db= 60):
audio = librosa.core.load(path, sr= sample_rate)[0]
audio = librosa.effects.trim(audio, top_db=trim_top_db, frame_length= 512, hop_length= 256)[0]
audio = librosa.util.normalize(audio)
return audio
def Mel_Generate(
audio,
sample_rate,
num_mel,
num_frequency,
window_length,
hop_length,
pre_emphasis= 0.97,
mel_fmin= 125,
mel_fmax= 7600,
min_level_db= -100,
max_abs_value= 4.0
):
pre_emphasis_audio = Preemphasis(audio, pre_emphasis= pre_emphasis)
n_fft = (num_frequency - 1) * 2
magnitude = np.abs(librosa.stft(
y= pre_emphasis_audio,
n_fft= n_fft,
hop_length= hop_length,
win_length= window_length
))
mel_filter = librosa.filters.mel(sr= sample_rate, n_fft= n_fft, n_mels= num_mel, fmin= mel_fmin, fmax= mel_fmax)
magnitude = mel_filter @ magnitude
db = 20 * np.log10(magnitude + 1e-7)
mel = np.clip(
(2 * max_abs_value) * (db - min_level_db)/-min_level_db - max_abs_value,
-max_abs_value,
max_abs_value
).T
return mel
def Preemphasis(audio, pre_emphasis = 0.97):
return signal.lfilter([1.0, -pre_emphasis], [1.0], audio)