-
-
Notifications
You must be signed in to change notification settings - Fork 101
/
fallback.rs
346 lines (300 loc) · 11.5 KB
/
fallback.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
// This module defines pure Rust platform independent implementations of all
// the memchr routines. We do our best to make them fast. Some of them may even
// get auto-vectorized.
use core::cmp;
use core::ptr;
use core::usize;
#[cfg(target_pointer_width = "32")]
const USIZE_BYTES: usize = 4;
#[cfg(target_pointer_width = "64")]
const USIZE_BYTES: usize = 8;
// The number of bytes to loop at in one iteration of memchr/memrchr.
const LOOP_SIZE: usize = 2 * USIZE_BYTES;
/// Return `true` if `x` contains any zero byte.
///
/// From *Matters Computational*, J. Arndt
///
/// "The idea is to subtract one from each of the bytes and then look for
/// bytes where the borrow propagated all the way to the most significant
/// bit."
#[inline(always)]
fn contains_zero_byte(x: usize) -> bool {
const LO_U64: u64 = 0x0101010101010101;
const HI_U64: u64 = 0x8080808080808080;
const LO_USIZE: usize = LO_U64 as usize;
const HI_USIZE: usize = HI_U64 as usize;
x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
}
/// Repeat the given byte into a word size number. That is, every 8 bits
/// is equivalent to the given byte. For example, if `b` is `\x4E` or
/// `01001110` in binary, then the returned value on a 32-bit system would be:
/// `01001110_01001110_01001110_01001110`.
#[inline(always)]
fn repeat_byte(b: u8) -> usize {
(b as usize) * (usize::MAX / 255)
}
pub fn memchr(n1: u8, haystack: &[u8]) -> Option<usize> {
let vn1 = repeat_byte(n1);
let confirm = |byte| byte == n1;
let loop_size = cmp::min(LOOP_SIZE, haystack.len());
let align = USIZE_BYTES - 1;
let start_ptr = haystack.as_ptr();
let end_ptr = haystack[haystack.len()..].as_ptr();
let mut ptr = start_ptr;
unsafe {
if haystack.len() < USIZE_BYTES {
return forward_search(start_ptr, end_ptr, ptr, confirm);
}
let chunk = read_unaligned_usize(ptr);
if contains_zero_byte(chunk ^ vn1) {
return forward_search(start_ptr, end_ptr, ptr, confirm);
}
ptr = ptr_add(ptr, USIZE_BYTES - (start_ptr as usize & align));
debug_assert!(ptr > start_ptr);
debug_assert!(ptr_sub(end_ptr, USIZE_BYTES) >= start_ptr);
while loop_size == LOOP_SIZE && ptr <= ptr_sub(end_ptr, loop_size) {
debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES);
let a = *(ptr as *const usize);
let b = *(ptr_add(ptr, USIZE_BYTES) as *const usize);
let eqa = contains_zero_byte(a ^ vn1);
let eqb = contains_zero_byte(b ^ vn1);
if eqa || eqb {
break;
}
ptr = ptr_add(ptr, LOOP_SIZE);
}
forward_search(start_ptr, end_ptr, ptr, confirm)
}
}
/// Like `memchr`, but searches for two bytes instead of one.
pub fn memchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
let vn1 = repeat_byte(n1);
let vn2 = repeat_byte(n2);
let confirm = |byte| byte == n1 || byte == n2;
let align = USIZE_BYTES - 1;
let start_ptr = haystack.as_ptr();
let end_ptr = haystack[haystack.len()..].as_ptr();
let mut ptr = start_ptr;
unsafe {
if haystack.len() < USIZE_BYTES {
return forward_search(start_ptr, end_ptr, ptr, confirm);
}
let chunk = read_unaligned_usize(ptr);
let eq1 = contains_zero_byte(chunk ^ vn1);
let eq2 = contains_zero_byte(chunk ^ vn2);
if eq1 || eq2 {
return forward_search(start_ptr, end_ptr, ptr, confirm);
}
ptr = ptr_add(ptr, USIZE_BYTES - (start_ptr as usize & align));
debug_assert!(ptr > start_ptr);
debug_assert!(ptr_sub(end_ptr, USIZE_BYTES) >= start_ptr);
while ptr <= ptr_sub(end_ptr, USIZE_BYTES) {
debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES);
let chunk = *(ptr as *const usize);
let eq1 = contains_zero_byte(chunk ^ vn1);
let eq2 = contains_zero_byte(chunk ^ vn2);
if eq1 || eq2 {
break;
}
ptr = ptr_add(ptr, USIZE_BYTES);
}
forward_search(start_ptr, end_ptr, ptr, confirm)
}
}
/// Like `memchr`, but searches for three bytes instead of one.
pub fn memchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
let vn1 = repeat_byte(n1);
let vn2 = repeat_byte(n2);
let vn3 = repeat_byte(n3);
let confirm = |byte| byte == n1 || byte == n2 || byte == n3;
let align = USIZE_BYTES - 1;
let start_ptr = haystack.as_ptr();
let end_ptr = haystack[haystack.len()..].as_ptr();
let mut ptr = start_ptr;
unsafe {
if haystack.len() < USIZE_BYTES {
return forward_search(start_ptr, end_ptr, ptr, confirm);
}
let chunk = read_unaligned_usize(ptr);
let eq1 = contains_zero_byte(chunk ^ vn1);
let eq2 = contains_zero_byte(chunk ^ vn2);
let eq3 = contains_zero_byte(chunk ^ vn3);
if eq1 || eq2 || eq3 {
return forward_search(start_ptr, end_ptr, ptr, confirm);
}
ptr = ptr_add(ptr, USIZE_BYTES - (start_ptr as usize & align));
debug_assert!(ptr > start_ptr);
debug_assert!(ptr_sub(end_ptr, USIZE_BYTES) >= start_ptr);
while ptr <= ptr_sub(end_ptr, USIZE_BYTES) {
debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES);
let chunk = *(ptr as *const usize);
let eq1 = contains_zero_byte(chunk ^ vn1);
let eq2 = contains_zero_byte(chunk ^ vn2);
let eq3 = contains_zero_byte(chunk ^ vn3);
if eq1 || eq2 || eq3 {
break;
}
ptr = ptr_add(ptr, USIZE_BYTES);
}
forward_search(start_ptr, end_ptr, ptr, confirm)
}
}
/// Return the last index matching the byte `x` in `text`.
pub fn memrchr(n1: u8, haystack: &[u8]) -> Option<usize> {
let vn1 = repeat_byte(n1);
let confirm = |byte| byte == n1;
let loop_size = cmp::min(LOOP_SIZE, haystack.len());
let align = USIZE_BYTES - 1;
let start_ptr = haystack.as_ptr();
let end_ptr = haystack[haystack.len()..].as_ptr();
let mut ptr = end_ptr;
unsafe {
if haystack.len() < USIZE_BYTES {
return reverse_search(start_ptr, end_ptr, ptr, confirm);
}
let chunk = read_unaligned_usize(ptr_sub(ptr, USIZE_BYTES));
if contains_zero_byte(chunk ^ vn1) {
return reverse_search(start_ptr, end_ptr, ptr, confirm);
}
ptr = (end_ptr as usize & !align) as *const u8;
debug_assert!(start_ptr <= ptr && ptr <= end_ptr);
while loop_size == LOOP_SIZE && ptr >= ptr_add(start_ptr, loop_size) {
debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES);
let a = *(ptr_sub(ptr, 2 * USIZE_BYTES) as *const usize);
let b = *(ptr_sub(ptr, 1 * USIZE_BYTES) as *const usize);
let eqa = contains_zero_byte(a ^ vn1);
let eqb = contains_zero_byte(b ^ vn1);
if eqa || eqb {
break;
}
ptr = ptr_sub(ptr, loop_size);
}
reverse_search(start_ptr, end_ptr, ptr, confirm)
}
}
/// Like `memrchr`, but searches for two bytes instead of one.
pub fn memrchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
let vn1 = repeat_byte(n1);
let vn2 = repeat_byte(n2);
let confirm = |byte| byte == n1 || byte == n2;
let align = USIZE_BYTES - 1;
let start_ptr = haystack.as_ptr();
let end_ptr = haystack[haystack.len()..].as_ptr();
let mut ptr = end_ptr;
unsafe {
if haystack.len() < USIZE_BYTES {
return reverse_search(start_ptr, end_ptr, ptr, confirm);
}
let chunk = read_unaligned_usize(ptr_sub(ptr, USIZE_BYTES));
let eq1 = contains_zero_byte(chunk ^ vn1);
let eq2 = contains_zero_byte(chunk ^ vn2);
if eq1 || eq2 {
return reverse_search(start_ptr, end_ptr, ptr, confirm);
}
ptr = (end_ptr as usize & !align) as *const u8;
debug_assert!(start_ptr <= ptr && ptr <= end_ptr);
while ptr >= ptr_add(start_ptr, USIZE_BYTES) {
debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES);
let chunk = *(ptr_sub(ptr, USIZE_BYTES) as *const usize);
let eq1 = contains_zero_byte(chunk ^ vn1);
let eq2 = contains_zero_byte(chunk ^ vn2);
if eq1 || eq2 {
break;
}
ptr = ptr_sub(ptr, USIZE_BYTES);
}
reverse_search(start_ptr, end_ptr, ptr, confirm)
}
}
/// Like `memrchr`, but searches for three bytes instead of one.
pub fn memrchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
let vn1 = repeat_byte(n1);
let vn2 = repeat_byte(n2);
let vn3 = repeat_byte(n3);
let confirm = |byte| byte == n1 || byte == n2 || byte == n3;
let align = USIZE_BYTES - 1;
let start_ptr = haystack.as_ptr();
let end_ptr = haystack[haystack.len()..].as_ptr();
let mut ptr = end_ptr;
unsafe {
if haystack.len() < USIZE_BYTES {
return reverse_search(start_ptr, end_ptr, ptr, confirm);
}
let chunk = read_unaligned_usize(ptr_sub(ptr, USIZE_BYTES));
let eq1 = contains_zero_byte(chunk ^ vn1);
let eq2 = contains_zero_byte(chunk ^ vn2);
let eq3 = contains_zero_byte(chunk ^ vn3);
if eq1 || eq2 || eq3 {
return reverse_search(start_ptr, end_ptr, ptr, confirm);
}
ptr = (end_ptr as usize & !align) as *const u8;
debug_assert!(start_ptr <= ptr && ptr <= end_ptr);
while ptr >= ptr_add(start_ptr, USIZE_BYTES) {
debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES);
let chunk = *(ptr_sub(ptr, USIZE_BYTES) as *const usize);
let eq1 = contains_zero_byte(chunk ^ vn1);
let eq2 = contains_zero_byte(chunk ^ vn2);
let eq3 = contains_zero_byte(chunk ^ vn3);
if eq1 || eq2 || eq3 {
break;
}
ptr = ptr_sub(ptr, USIZE_BYTES);
}
reverse_search(start_ptr, end_ptr, ptr, confirm)
}
}
#[inline(always)]
unsafe fn forward_search<F: Fn(u8) -> bool>(
start_ptr: *const u8,
end_ptr: *const u8,
mut ptr: *const u8,
confirm: F,
) -> Option<usize> {
debug_assert!(start_ptr <= ptr);
debug_assert!(ptr <= end_ptr);
while ptr < end_ptr {
if confirm(*ptr) {
return Some(sub(ptr, start_ptr));
}
ptr = ptr.offset(1);
}
None
}
#[inline(always)]
unsafe fn reverse_search<F: Fn(u8) -> bool>(
start_ptr: *const u8,
end_ptr: *const u8,
mut ptr: *const u8,
confirm: F,
) -> Option<usize> {
debug_assert!(start_ptr <= ptr);
debug_assert!(ptr <= end_ptr);
while ptr > start_ptr {
ptr = ptr.offset(-1);
if confirm(*ptr) {
return Some(sub(ptr, start_ptr));
}
}
None
}
/// Increment the given pointer by the given amount.
unsafe fn ptr_add(ptr: *const u8, amt: usize) -> *const u8 {
debug_assert!(amt < ::core::isize::MAX as usize);
ptr.offset(amt as isize)
}
/// Decrement the given pointer by the given amount.
unsafe fn ptr_sub(ptr: *const u8, amt: usize) -> *const u8 {
debug_assert!(amt < ::core::isize::MAX as usize);
ptr.offset((amt as isize).wrapping_neg())
}
unsafe fn read_unaligned_usize(ptr: *const u8) -> usize {
let mut n: usize = 0;
ptr::copy_nonoverlapping(ptr, &mut n as *mut _ as *mut u8, USIZE_BYTES);
n
}
/// Subtract `b` from `a` and return the difference. `a` should be greater than
/// or equal to `b`.
fn sub(a: *const u8, b: *const u8) -> usize {
debug_assert!(a >= b);
(a as usize) - (b as usize)
}