-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfix_analysis.py
227 lines (183 loc) · 7.44 KB
/
fix_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from __future__ import print_function
import argparse
import os
import shutil
import time
import random
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torch.nn.functional as F
import models.wrn as models
from utils import Bar, Logger, AverageMeter, accuracy
parser = argparse.ArgumentParser(description='PyTorch FixMatch Analysis')
# Optimization options
parser.add_argument('--batch-size', default=64, type=int, metavar='N',
help='train batchsize')
# Checkpoints
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Miscs
parser.add_argument('--manualSeed', type=int, default=0, help='manual seed')
#Device options
parser.add_argument('--gpu', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
# Method options
parser.add_argument('--num_max', type=int, default=1500,
help='Number of samples in the maximal class')
parser.add_argument('--ratio', type=float, default=2.0,
help='Relative size between labeled and unlabeled data')
parser.add_argument('--imb_ratio', type=int, default=100,
help='Imbalance ratio for data')
# Dataset options
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100'],
help='Dataset')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
np.random.seed(args.manualSeed)
if args.dataset == 'cifar10':
import dataset.fix_cifar10 as dataset
num_class = 10
args.num_max = 1500
elif args.dataset == 'cifar100':
import dataset.fix_cifar100 as dataset
num_class = 100
args.num_max = 150
best_acc = 0 # best test accuracy
def main():
global best_acc
# Data
print(f'==> Preparing imbalanced CIFAR-10')
N_SAMPLES_PER_CLASS = make_imb_data(args.num_max, num_class, args.imb_ratio)
U_SAMPLES_PER_CLASS = make_imb_data(args.ratio * args.num_max, num_class, args.imb_ratio)
N_SAMPLES_PER_CLASS_T = torch.Tensor(N_SAMPLES_PER_CLASS)
_, _, test_set = dataset.get_cifar('../datasets', N_SAMPLES_PER_CLASS, U_SAMPLES_PER_CLASS)
test_loader = data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=4)
# Model
print("==> creating WRN-28-2")
def create_model(ema=False):
model = models.WRN(2, num_class)
if use_cuda:
model = model.cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
if use_cuda:
cudnn.benchmark = True
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
criterion = nn.CrossEntropyLoss()
# Resume
title = 'fix-cifar'
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['ema_state_dict'])
# Evaluation part
test_loss, test_acc, test_cls, test_classwise_num, test_classwise_precision, test_classwise_recall = validate(test_loader, model, criterion, use_cuda, mode='Test Stats ')
print('Mean acc:')
print(test_acc)
print('Per-class precision:')
print(test_classwise_precision)
print('Per-class recall')
print(test_classwise_recall)
def validate(valloader, model, criterion, use_cuda, mode):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar(f'{mode}', max=len(valloader))
classwise_num = torch.zeros(num_class)
classwise_TP = torch.zeros(num_class)
classwise_FP = torch.zeros(num_class)
section_acc = torch.zeros(3)
if use_cuda:
classwise_num = classwise_num.cuda()
classwise_TP = classwise_TP.cuda()
classwise_FP = classwise_FP.cuda()
section_acc = section_acc.cuda()
with torch.no_grad():
for batch_idx, (inputs, targets, _) in enumerate(valloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
# compute output
outputs, _ = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# classwise prediction
pred_label = outputs.max(1)[1]
pred_mask = (targets == pred_label).float()
for i in range(num_class):
class_mask = (targets == i).float()
classwise_num[i] += class_mask.sum()
classwise_TP[i] += (class_mask * pred_mask).sum()
classwise_FP[i] += ((1 - class_mask) * ((pred_label == i).float())).sum()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | ' \
'Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(valloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
#print(classwise_FP)
# Major, Neutral, Minor
section_num = int(num_class / 3)
classwise_precision = (classwise_TP / (classwise_TP + classwise_FP))
classwise_recall = (classwise_TP / classwise_num)
section_acc[0] = classwise_recall[:section_num].mean()
section_acc[2] = classwise_recall[-1 * section_num:].mean()
section_acc[1] = classwise_recall[section_num:-1 * section_num].mean()
if use_cuda:
classwise_num = classwise_num.cpu()
classwise_precision = classwise_precision.cpu()
classwise_recall = classwise_recall.cpu()
section_acc = section_acc.cpu()
return (losses.avg, top1.avg, section_acc.numpy(), classwise_num, classwise_precision, classwise_recall)
def make_imb_data(max_num, class_num, gamma):
mu = np.power(1/gamma, 1/(class_num - 1))
class_num_list = []
for i in range(class_num):
if i == (class_num - 1):
class_num_list.append(int(max_num / gamma))
else:
class_num_list.append(int(max_num * np.power(mu, i)))
print(class_num_list)
return list(class_num_list)
if __name__ == '__main__':
main()