-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
44 lines (40 loc) · 1.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# main.py
import torch
from agent import Agent
from environment import Environment
from knowledge_base import KnowledgeBase
from idea_generator import IdeaGenerator
from experience_replay import ExperienceReplay
def main():
# Initialize components
env = Environment()
agent = Agent(state_size=env.state_size, action_size=env.action_size)
knowledge_base = KnowledgeBase()
idea_generator = IdeaGenerator(knowledge_base)
replay_buffer = ExperienceReplay()
num_episodes = 1000
for episode in range(num_episodes):
state = env.reset()
done = False
while not done:
# Agent selects action
action = agent.select_action(state)
# Environment returns next state and reward
next_state, reward, done = env.step(action)
# Store experience
replay_buffer.push((state, action, reward, next_state, done))
# Update knowledge base
knowledge_base.store_experience(state, action, reward, next_state, done)
# Agent learns from experience
if len(replay_buffer) > agent.batch_size:
experiences = replay_buffer.sample(agent.batch_size)
agent.learn(experiences)
state = next_state
print(f"Episode {episode+1}/{num_episodes} completed.")
# Generate ideas based on accumulated experiences
ideas = idea_generator.generate_ideas()
print("Generated Ideas:")
for idea in ideas:
print(f"- {idea}")
if __name__ == "__main__":
main()