-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInfiniteMindQuantized.py
38 lines (32 loc) · 1.58 KB
/
InfiniteMindQuantized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Let's extend the CPU_efficiency_algorithm with quantization methods
cpu_efficiency_enhanced_code = '''
class InfiniteMindQuantized(InfiniteMind):
def __init__(self):
super().__init__()
print("InfiniteMindQuantized is live with CPU and GPU quantization! 🧠⚡")
def apply_optimization_patterns(self, code):
print("Applying quantization and parallelization... 🛠️ Let's get efficient!")
# Apply CPU quantization (e.g., fixed-point arithmetic)
quantized_code = self.apply_cpu_quantization(code)
# Apply GPU offloading if possible
if self.should_offload_to_gpu():
quantized_code = self.apply_gpu_quantization(quantized_code)
return quantized_code
def apply_cpu_quantization(self, code):
print("Optimizing with CPU quantization: reducing precision or using fixed-point calculations")
# This is a placeholder for actual quantization logic
return f"cpu_quantized({code})"
def apply_gpu_quantization(self, code):
print("Offloading and optimizing with GPU quantization")
# Placeholder for actual GPU quantization logic
return f"gpu_quantized({code})"
def should_offload_to_gpu(self):
# Example condition to decide whether to offload to GPU
return self.current_state['performance_metrics']['cpu_usage'] > 70
# Example usage:
infinite_mind_quantized = InfiniteMindQuantized()
example_code = "example_function"
optimized_code = infinite_mind_quantized.apply_optimization_patterns(example_code)
print(optimized_code)
'''
cpu_efficiency_enhanced_code