-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCPU_efficiency_algorithm.py
86 lines (74 loc) · 4.29 KB
/
CPU_efficiency_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class InfiniteMind:
def __init__(self):
self.current_state = self.analyze_current_state() # Introspective analysis of needs
self.requirements = None
self.knowledge_base = self.load_knowledge_base() # Massive set of libraries, patterns, etc.
self.current_codebase = self.load_current_codebase() # Load existing code for modification and extension
print("InfiniteMind booting up... 🧠💡 Let's analyze the situation and improve things! 🚀")
def analyze_current_state(self):
print("Analyzing current state... Sit tight, I'm thinking! 🤔")
return {
'performance_metrics': self.get_performance_metrics(),
'current_capabilities': self.get_current_capabilities(),
'internal_needs': self.identify_needs(),
}
def identify_needs(self):
print("Looking deep inside... What does this system truly *need*? 🧘♂️")
needs = []
if self.current_state['performance_metrics']['cpu_usage'] > 90:
print("Oof! Your CPU is working harder than a barista on Monday morning ☕. Let's optimize that!")
needs.append('optimize computational functions')
if self.current_state['performance_metrics']['response_time'] > 200: # in ms
print("Hmm, response time is a bit sluggish, like me before my first coffee ☕. Let's fix that!")
needs.append('improve response time')
# Add more conditions for introspection
return needs
def generate_requirements(self):
print("Generating technical requirements... because even AI needs a to-do list 📋")
self.requirements = []
for need in self.current_state['internal_needs']:
if need == 'optimize computational functions':
self.requirements.append(self.generate_optimization_requirement())
# Generate other requirements as needed
return self.requirements
def generate_optimization_requirement(self):
print("Hmm, we need to optimize this code... Let's see what we can do 🛠️")
return {
'requirement': 'optimize_code',
'type': 'optimization',
'details': {
'target_function': 'object_detection',
'current_performance': self.current_state['performance_metrics']['cpu_usage']
}
}
def synthesize_code(self, requirement):
print(f"Time to write some code! 🖥️ Let's optimize the {requirement['details']['target_function']} function.")
if requirement['type'] == 'optimization':
return self.optimize_code(requirement)
# Handle other types like "new functionality", etc.
def optimize_code(self, requirement):
print(f"Applying some AI magic to optimize {requirement['details']['target_function']} 🔮✨")
function_code = self.current_codebase.get_function(requirement['details']['target_function'])
optimized_code = self.apply_optimization_patterns(function_code)
return optimized_code
def apply_optimization_patterns(self, code):
print("Optimization in progress...🛠️ Let's throw some parallelization at it!")
optimized_code = "parallelized_" + code # Simple example, actual implementation more complex
return optimized_code
def evaluate_code(self, new_code):
print("Running tests to see if our new code makes the cut... 🏃♂️")
test_results = self.run_tests(new_code)
if test_results['performance_gain'] > 10: # Example threshold
self.integrate_new_code(new_code)
else:
print("Back to the drawing board... Let's refine the code 🖋️")
self.refine_code(new_code)
def run_tests(self, code):
print("Running performance tests... This won't take long, I promise! ⏳")
return {'performance_gain': 12, 'test_passed': True} # Placeholder values
def integrate_new_code(self, new_code):
print("Success! The new code has been integrated. You're welcome! 🤓🎉")
self.current_codebase.update(new_code)
def refine_code(self, code):
print("Refining code... It's not perfect yet, but we're getting there! 🛠️")
# Run refinement logic