forked from keras-team/keras-applications
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnasnet.py
754 lines (653 loc) · 29.3 KB
/
nasnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
"""NASNet-A models for Keras.
NASNet refers to Neural Architecture Search Network, a family of models
that were designed automatically by learning the model architectures
directly on the dataset of interest.
Here we consider NASNet-A, the highest performance model that was found
for the CIFAR-10 dataset, and then extended to ImageNet 2012 dataset,
obtaining state of the art performance on CIFAR-10 and ImageNet 2012.
Only the NASNet-A models, and their respective weights, which are suited
for ImageNet 2012 are provided.
The below table describes the performance on ImageNet 2012:
--------------------------------------------------------------------------------
Architecture | Top-1 Acc | Top-5 Acc | Multiply-Adds | Params (M)
--------------------------------------------------------------------------------
| NASNet-A (4 @ 1056) | 74.0 % | 91.6 % | 564 M | 5.3 |
| NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 |
--------------------------------------------------------------------------------
Weights obtained from the official TensorFlow repository found at
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
# References
- [Learning Transferable Architectures for Scalable Image Recognition]
(https://arxiv.org/abs/1707.07012) (CVPR 2018)
This model is based on the following implementations:
- [TF Slim Implementation]
(https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py)
- [TensorNets implementation]
(https://github.com/taehoonlee/tensornets/blob/master/tensornets/nasnets.py)
"""
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import os
import warnings
from . import correct_pad
from . import get_submodules_from_kwargs
from . import imagenet_utils
from .imagenet_utils import decode_predictions
from .imagenet_utils import _obtain_input_shape
BASE_WEIGHTS_PATH = ('https://github.com/titu1994/Keras-NASNet/'
'releases/download/v1.2/')
NASNET_MOBILE_WEIGHT_PATH = BASE_WEIGHTS_PATH + 'NASNet-mobile.h5'
NASNET_MOBILE_WEIGHT_PATH_NO_TOP = BASE_WEIGHTS_PATH + 'NASNet-mobile-no-top.h5'
NASNET_LARGE_WEIGHT_PATH = BASE_WEIGHTS_PATH + 'NASNet-large.h5'
NASNET_LARGE_WEIGHT_PATH_NO_TOP = BASE_WEIGHTS_PATH + 'NASNet-large-no-top.h5'
backend = None
layers = None
models = None
keras_utils = None
def NASNet(input_shape=None,
penultimate_filters=4032,
num_blocks=6,
stem_block_filters=96,
skip_reduction=True,
filter_multiplier=2,
include_top=True,
weights=None,
input_tensor=None,
pooling=None,
classes=1000,
default_size=None,
**kwargs):
'''Instantiates a NASNet model.
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
# Arguments
input_shape: Optional shape tuple, the input shape
is by default `(331, 331, 3)` for NASNetLarge and
`(224, 224, 3)` for NASNetMobile.
It should have exactly 3 input channels,
and width and height should be no smaller than 32.
E.g. `(224, 224, 3)` would be one valid value.
penultimate_filters: Number of filters in the penultimate layer.
NASNet models use the notation `NASNet (N @ P)`, where:
- N is the number of blocks
- P is the number of penultimate filters
num_blocks: Number of repeated blocks of the NASNet model.
NASNet models use the notation `NASNet (N @ P)`, where:
- N is the number of blocks
- P is the number of penultimate filters
stem_block_filters: Number of filters in the initial stem block
skip_reduction: Whether to skip the reduction step at the tail
end of the network.
filter_multiplier: Controls the width of the network.
- If `filter_multiplier` < 1.0, proportionally decreases the number
of filters in each layer.
- If `filter_multiplier` > 1.0, proportionally increases the number
of filters in each layer.
- If `filter_multiplier` = 1, default number of filters from the
paper are used at each layer.
include_top: Whether to include the fully-connected
layer at the top of the network.
weights: `None` (random initialization) or
`imagenet` (ImageNet weights)
input_tensor: Optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: Optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
default_size: Specifies the default image size of the model
# Returns
A Keras model instance.
# Raises
ValueError: In case of invalid argument for `weights`,
invalid input shape or invalid `penultimate_filters` value.
'''
global backend, layers, models, keras_utils
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000')
if (isinstance(input_shape, tuple) and
None in input_shape and
weights == 'imagenet'):
raise ValueError('When specifying the input shape of a NASNet'
' and loading `ImageNet` weights, '
'the input_shape argument must be static '
'(no None entries). Got: `input_shape=' +
str(input_shape) + '`.')
if default_size is None:
default_size = 331
# Determine proper input shape and default size.
input_shape = _obtain_input_shape(input_shape,
default_size=default_size,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=True,
weights=weights)
if backend.image_data_format() != 'channels_last':
warnings.warn('The NASNet family of models is only available '
'for the input data format "channels_last" '
'(width, height, channels). '
'However your settings specify the default '
'data format "channels_first" (channels, width, height).'
' You should set `image_data_format="channels_last"` '
'in your Keras config located at ~/.keras/keras.json. '
'The model being returned right now will expect inputs '
'to follow the "channels_last" data format.')
backend.set_image_data_format('channels_last')
old_data_format = 'channels_first'
else:
old_data_format = None
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
if penultimate_filters % (24 * (filter_multiplier ** 2)) != 0:
raise ValueError(
'For NASNet-A models, the `penultimate_filters` must be a multiple '
'of 24 * (`filter_multiplier` ** 2). Current value: %d' %
penultimate_filters)
channel_dim = 1 if backend.image_data_format() == 'channels_first' else -1
filters = penultimate_filters // 24
x = layers.Conv2D(stem_block_filters, (3, 3),
strides=(2, 2),
padding='valid',
use_bias=False,
name='stem_conv1',
kernel_initializer='he_normal')(img_input)
x = layers.BatchNormalization(
axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='stem_bn1')(x)
p = None
x, p = _reduction_a_cell(x, p, filters // (filter_multiplier ** 2),
block_id='stem_1')
x, p = _reduction_a_cell(x, p, filters // filter_multiplier,
block_id='stem_2')
for i in range(num_blocks):
x, p = _normal_a_cell(x, p, filters, block_id='%d' % (i))
x, p0 = _reduction_a_cell(x, p, filters * filter_multiplier,
block_id='reduce_%d' % (num_blocks))
p = p0 if not skip_reduction else p
for i in range(num_blocks):
x, p = _normal_a_cell(x, p, filters * filter_multiplier,
block_id='%d' % (num_blocks + i + 1))
x, p0 = _reduction_a_cell(x, p, filters * filter_multiplier ** 2,
block_id='reduce_%d' % (2 * num_blocks))
p = p0 if not skip_reduction else p
for i in range(num_blocks):
x, p = _normal_a_cell(x, p, filters * filter_multiplier ** 2,
block_id='%d' % (2 * num_blocks + i + 1))
x = layers.Activation('relu')(x)
if include_top:
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(classes, activation='softmax', name='predictions')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
model = models.Model(inputs, x, name='NASNet')
# Load weights.
if weights == 'imagenet':
if default_size == 224: # mobile version
if include_top:
weights_path = keras_utils.get_file(
'nasnet_mobile.h5',
NASNET_MOBILE_WEIGHT_PATH,
cache_subdir='models',
file_hash='020fb642bf7360b370c678b08e0adf61')
else:
weights_path = keras_utils.get_file(
'nasnet_mobile_no_top.h5',
NASNET_MOBILE_WEIGHT_PATH_NO_TOP,
cache_subdir='models',
file_hash='1ed92395b5b598bdda52abe5c0dbfd63')
model.load_weights(weights_path)
elif default_size == 331: # large version
if include_top:
weights_path = keras_utils.get_file(
'nasnet_large.h5',
NASNET_LARGE_WEIGHT_PATH,
cache_subdir='models',
file_hash='11577c9a518f0070763c2b964a382f17')
else:
weights_path = keras_utils.get_file(
'nasnet_large_no_top.h5',
NASNET_LARGE_WEIGHT_PATH_NO_TOP,
cache_subdir='models',
file_hash='d81d89dc07e6e56530c4e77faddd61b5')
model.load_weights(weights_path)
else:
raise ValueError(
'ImageNet weights can only be loaded with NASNetLarge'
' or NASNetMobile')
elif weights is not None:
model.load_weights(weights)
if old_data_format:
backend.set_image_data_format(old_data_format)
return model
def NASNetLarge(input_shape=None,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
**kwargs):
'''Instantiates a NASNet model in ImageNet mode.
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
# Arguments
input_shape: Optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(331, 331, 3)` for NASNetLarge.
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(224, 224, 3)` would be one valid value.
include_top: Whether to include the fully-connected
layer at the top of the network.
weights: `None` (random initialization) or
`imagenet` (ImageNet weights)
input_tensor: Optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: Optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
'''
return NASNet(input_shape,
penultimate_filters=4032,
num_blocks=6,
stem_block_filters=96,
skip_reduction=True,
filter_multiplier=2,
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
pooling=pooling,
classes=classes,
default_size=331,
**kwargs)
def NASNetMobile(input_shape=None,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
**kwargs):
'''Instantiates a Mobile NASNet model in ImageNet mode.
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
# Arguments
input_shape: Optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` for NASNetMobile
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(224, 224, 3)` would be one valid value.
include_top: Whether to include the fully-connected
layer at the top of the network.
weights: `None` (random initialization) or
`imagenet` (ImageNet weights)
input_tensor: Optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model
will be the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a
2D tensor.
- `max` means that global max pooling will
be applied.
classes: Optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: In case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
'''
return NASNet(input_shape,
penultimate_filters=1056,
num_blocks=4,
stem_block_filters=32,
skip_reduction=False,
filter_multiplier=2,
include_top=include_top,
weights=weights,
input_tensor=input_tensor,
pooling=pooling,
classes=classes,
default_size=224,
**kwargs)
def _separable_conv_block(ip, filters,
kernel_size=(3, 3),
strides=(1, 1),
block_id=None):
'''Adds 2 blocks of [relu-separable conv-batchnorm].
# Arguments
ip: Input tensor
filters: Number of output filters per layer
kernel_size: Kernel size of separable convolutions
strides: Strided convolution for downsampling
block_id: String block_id
# Returns
A Keras tensor
'''
channel_dim = 1 if backend.image_data_format() == 'channels_first' else -1
with backend.name_scope('separable_conv_block_%s' % block_id):
x = layers.Activation('relu')(ip)
if strides == (2, 2):
x = layers.ZeroPadding2D(
padding=correct_pad(backend, x, kernel_size),
name='separable_conv_1_pad_%s' % block_id)(x)
conv_pad = 'valid'
else:
conv_pad = 'same'
x = layers.SeparableConv2D(filters, kernel_size,
strides=strides,
name='separable_conv_1_%s' % block_id,
padding=conv_pad, use_bias=False,
kernel_initializer='he_normal')(x)
x = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name='separable_conv_1_bn_%s' % (block_id))(x)
x = layers.Activation('relu')(x)
x = layers.SeparableConv2D(filters, kernel_size,
name='separable_conv_2_%s' % block_id,
padding='same',
use_bias=False,
kernel_initializer='he_normal')(x)
x = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name='separable_conv_2_bn_%s' % (block_id))(x)
return x
def _adjust_block(p, ip, filters, block_id=None):
'''Adjusts the input `previous path` to match the shape of the `input`.
Used in situations where the output number of filters needs to be changed.
# Arguments
p: Input tensor which needs to be modified
ip: Input tensor whose shape needs to be matched
filters: Number of output filters to be matched
block_id: String block_id
# Returns
Adjusted Keras tensor
'''
channel_dim = 1 if backend.image_data_format() == 'channels_first' else -1
img_dim = 2 if backend.image_data_format() == 'channels_first' else -2
ip_shape = backend.int_shape(ip)
if p is not None:
p_shape = backend.int_shape(p)
with backend.name_scope('adjust_block'):
if p is None:
p = ip
elif p_shape[img_dim] != ip_shape[img_dim]:
with backend.name_scope('adjust_reduction_block_%s' % block_id):
p = layers.Activation('relu',
name='adjust_relu_1_%s' % block_id)(p)
p1 = layers.AveragePooling2D(
(1, 1),
strides=(2, 2),
padding='valid',
name='adjust_avg_pool_1_%s' % block_id)(p)
p1 = layers.Conv2D(
filters // 2, (1, 1),
padding='same',
use_bias=False, name='adjust_conv_1_%s' % block_id,
kernel_initializer='he_normal')(p1)
p2 = layers.ZeroPadding2D(padding=((0, 1), (0, 1)))(p)
p2 = layers.Cropping2D(cropping=((1, 0), (1, 0)))(p2)
p2 = layers.AveragePooling2D(
(1, 1),
strides=(2, 2),
padding='valid',
name='adjust_avg_pool_2_%s' % block_id)(p2)
p2 = layers.Conv2D(
filters // 2, (1, 1),
padding='same',
use_bias=False,
name='adjust_conv_2_%s' % block_id,
kernel_initializer='he_normal')(p2)
p = layers.concatenate([p1, p2], axis=channel_dim)
p = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name='adjust_bn_%s' % block_id)(p)
elif p_shape[channel_dim] != filters:
with backend.name_scope('adjust_projection_block_%s' % block_id):
p = layers.Activation('relu')(p)
p = layers.Conv2D(
filters,
(1, 1),
strides=(1, 1),
padding='same',
name='adjust_conv_projection_%s' % block_id,
use_bias=False,
kernel_initializer='he_normal')(p)
p = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name='adjust_bn_%s' % block_id)(p)
return p
def _normal_a_cell(ip, p, filters, block_id=None):
'''Adds a Normal cell for NASNet-A (Fig. 4 in the paper).
# Arguments
ip: Input tensor `x`
p: Input tensor `p`
filters: Number of output filters
block_id: String block_id
# Returns
A Keras tensor
'''
channel_dim = 1 if backend.image_data_format() == 'channels_first' else -1
with backend.name_scope('normal_A_block_%s' % block_id):
p = _adjust_block(p, ip, filters, block_id)
h = layers.Activation('relu')(ip)
h = layers.Conv2D(
filters, (1, 1),
strides=(1, 1),
padding='same',
name='normal_conv_1_%s' % block_id,
use_bias=False,
kernel_initializer='he_normal')(h)
h = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name='normal_bn_1_%s' % block_id)(h)
with backend.name_scope('block_1'):
x1_1 = _separable_conv_block(
h, filters,
kernel_size=(5, 5),
block_id='normal_left1_%s' % block_id)
x1_2 = _separable_conv_block(
p, filters,
block_id='normal_right1_%s' % block_id)
x1 = layers.add([x1_1, x1_2], name='normal_add_1_%s' % block_id)
with backend.name_scope('block_2'):
x2_1 = _separable_conv_block(
p, filters, (5, 5),
block_id='normal_left2_%s' % block_id)
x2_2 = _separable_conv_block(
p, filters, (3, 3),
block_id='normal_right2_%s' % block_id)
x2 = layers.add([x2_1, x2_2], name='normal_add_2_%s' % block_id)
with backend.name_scope('block_3'):
x3 = layers.AveragePooling2D(
(3, 3),
strides=(1, 1),
padding='same',
name='normal_left3_%s' % (block_id))(h)
x3 = layers.add([x3, p], name='normal_add_3_%s' % block_id)
with backend.name_scope('block_4'):
x4_1 = layers.AveragePooling2D(
(3, 3),
strides=(1, 1),
padding='same',
name='normal_left4_%s' % (block_id))(p)
x4_2 = layers.AveragePooling2D(
(3, 3),
strides=(1, 1),
padding='same',
name='normal_right4_%s' % (block_id))(p)
x4 = layers.add([x4_1, x4_2], name='normal_add_4_%s' % block_id)
with backend.name_scope('block_5'):
x5 = _separable_conv_block(h, filters,
block_id='normal_left5_%s' % block_id)
x5 = layers.add([x5, h], name='normal_add_5_%s' % block_id)
x = layers.concatenate([p, x1, x2, x3, x4, x5],
axis=channel_dim,
name='normal_concat_%s' % block_id)
return x, ip
def _reduction_a_cell(ip, p, filters, block_id=None):
'''Adds a Reduction cell for NASNet-A (Fig. 4 in the paper).
# Arguments
ip: Input tensor `x`
p: Input tensor `p`
filters: Number of output filters
block_id: String block_id
# Returns
A Keras tensor
'''
channel_dim = 1 if backend.image_data_format() == 'channels_first' else -1
with backend.name_scope('reduction_A_block_%s' % block_id):
p = _adjust_block(p, ip, filters, block_id)
h = layers.Activation('relu')(ip)
h = layers.Conv2D(
filters, (1, 1),
strides=(1, 1),
padding='same',
name='reduction_conv_1_%s' % block_id,
use_bias=False,
kernel_initializer='he_normal')(h)
h = layers.BatchNormalization(
axis=channel_dim,
momentum=0.9997,
epsilon=1e-3,
name='reduction_bn_1_%s' % block_id)(h)
h3 = layers.ZeroPadding2D(
padding=correct_pad(backend, h, 3),
name='reduction_pad_1_%s' % block_id)(h)
with backend.name_scope('block_1'):
x1_1 = _separable_conv_block(
h, filters, (5, 5),
strides=(2, 2),
block_id='reduction_left1_%s' % block_id)
x1_2 = _separable_conv_block(
p, filters, (7, 7),
strides=(2, 2),
block_id='reduction_right1_%s' % block_id)
x1 = layers.add([x1_1, x1_2], name='reduction_add_1_%s' % block_id)
with backend.name_scope('block_2'):
x2_1 = layers.MaxPooling2D(
(3, 3),
strides=(2, 2),
padding='valid',
name='reduction_left2_%s' % block_id)(h3)
x2_2 = _separable_conv_block(
p, filters, (7, 7),
strides=(2, 2),
block_id='reduction_right2_%s' % block_id)
x2 = layers.add([x2_1, x2_2], name='reduction_add_2_%s' % block_id)
with backend.name_scope('block_3'):
x3_1 = layers.AveragePooling2D(
(3, 3),
strides=(2, 2),
padding='valid',
name='reduction_left3_%s' % block_id)(h3)
x3_2 = _separable_conv_block(
p, filters, (5, 5),
strides=(2, 2),
block_id='reduction_right3_%s' % block_id)
x3 = layers.add([x3_1, x3_2], name='reduction_add3_%s' % block_id)
with backend.name_scope('block_4'):
x4 = layers.AveragePooling2D(
(3, 3),
strides=(1, 1),
padding='same',
name='reduction_left4_%s' % block_id)(x1)
x4 = layers.add([x2, x4])
with backend.name_scope('block_5'):
x5_1 = _separable_conv_block(
x1, filters, (3, 3),
block_id='reduction_left4_%s' % block_id)
x5_2 = layers.MaxPooling2D(
(3, 3),
strides=(2, 2),
padding='valid',
name='reduction_right5_%s' % block_id)(h3)
x5 = layers.add([x5_1, x5_2], name='reduction_add4_%s' % block_id)
x = layers.concatenate(
[x2, x3, x4, x5],
axis=channel_dim,
name='reduction_concat_%s' % block_id)
return x, ip
def preprocess_input(x, **kwargs):
"""Preprocesses a numpy array encoding a batch of images.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Preprocessed array.
"""
return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)