-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq1_theory.py
139 lines (122 loc) · 5.12 KB
/
q1_theory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import sys
import copy
import argparse
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision import datasets, transforms
from tqdm import tqdm
import pandas as pd
import math
import pathlib
torch.manual_seed(1234)
from my_models import *
from qheader import *
# Test the incremental and decremental stability of everything
@torch.no_grad()
def q1t_test_radii(model, exbits_list, dataset,
do_save = True,
csv_saveto = None):
assert isinstance(model, MuS)
assert isinstance(exbits_list, list)
model.cuda().eval()
lambd = model.lambd
if do_save:
assert csv_saveto is not None
print(f"Will save to: {csv_saveto}")
true_labels, ones_labels, exbs_labels, ones_mu_labels, exbs_mu_labels = [], [], [], [], []
df = pd.DataFrame(columns=[
"lambd", "p", "nnz",
"true_label",
"ones_label", "exbs_label", "ones_mu_label", "exbs_mu_label",
"ones_gap", "exbs_gap", "ones_mu_gap", "exbs_mu_gap"
])
pbar = tqdm(exbits_list)
for i, exbits in enumerate(pbar):
p, nnz = exbits.numel(), exbits.sum().int().item()
exbits = exbits.view(1,-1).cuda()
onesp = torch.ones_like(exbits)
zerosp = torch.zeros_like(exbits)
x, true_label = dataset[i]
true_labels.append(true_label)
x = x.cuda()
xx = x.unsqueeze(0).cuda()
x_test = torch.cat([xx, xx, xx, xx], dim=0)
alpha_test = torch.cat([onesp, exbits, onesp, exbits], dim=0)
mu_test = torch.cat([zerosp, zerosp, exbits, exbits], dim=0)
y_test = model(x_test, alpha=alpha_test, mu=mu_test)
y_ones_sorted, y_ones_order = y_test[0].sort(descending=True)
y_exbs_sorted, y_exbs_order = y_test[1].sort(descending=True)
y_ones_mu_sorted, y_ones_mu_order = y_test[2].sort(descending=True)
y_exbs_mu_sorted, y_exbs_mu_order = y_test[3].sort(descending=True)
ones_labels.append(y_ones_order[0].item())
exbs_labels.append(y_exbs_order[0].item())
ones_mu_labels.append(y_ones_mu_order[0].item())
exbs_mu_labels.append(y_exbs_mu_order[0].item())
this_df = pd.DataFrame({
"lambd" : round(lambd, 4),
"p" : p,
"nnz" : nnz,
"true_label" : true_labels[-1],
"ones_label" : ones_labels[-1],
"exbs_label" : exbs_labels[-1],
"ones_mu_label" : ones_mu_labels[-1],
"exbs_mu_label" : exbs_mu_labels[-1],
"ones_gap" : (y_ones_sorted[0] - y_ones_sorted[1]).item(),
"exbs_gap" : (y_exbs_sorted[0] - y_exbs_sorted[1]).item(),
"ones_mu_gap" : (y_ones_mu_sorted[0] - y_ones_mu_sorted[1]).item(),
"exbs_mu_gap" : (y_exbs_mu_sorted[0] - y_exbs_mu_sorted[1]).item(),
}, index=[i])
df = pd.concat([df, this_df])
if do_save:
df.to_csv(csv_saveto)
ttt = torch.tensor(true_labels)
ones_acc = (ttt == torch.tensor(ones_labels)).float().mean().item()
exbs_acc = (ttt == torch.tensor(exbs_labels)).float().mean().item()
ones_mu_acc = (ttt == torch.tensor(ones_mu_labels)).float().mean().item()
exbs_mu_acc = (ttt == torch.tensor(exbs_mu_labels)).float().mean().item()
desc_str = f"lam {model.lambd:.4f}, "
desc_str += f"ones ({ones_acc:.4f}, mu {ones_mu_acc:.4f}), "
desc_str += f"exbs ({exbs_acc:.4f}, mu {exbs_mu_acc:.4f}), "
pbar.set_description(desc_str)
return df
all_lambds = [8/8, 7/8, 6/8, 5/8, 4/8, 3/8, 2/8, 1/8, 1/16]
def q1t_run_stuff(configs,
model_types = ["vit16", "resnet50", "roberta"],
method_types = ["shap", "lime", "vgradu", "igradu"],
lambds = [8/8, 4/8, 3/8, 2/8, 1/8, 1/16],
top_fracs = [4/8, 3/8, 2/8, 1/8],
patch_size = 28,
q = 64,
num_todo = None):
total_stuff = len(model_types) * len(method_types) * len(lambds) * len(top_fracs)
tick = 0
for model_type in model_types:
for method_type in method_types:
for lambd in lambds:
for top_frac in top_fracs:
tick += 1
print(f"Running {tick}/{total_stuff}")
# Loading 1/16
if abs(lambd - 1/16) < 1e-5:
model = load_model(model_type, configs["models_dir"], lambd=1/8, patch_size=patch_size, q=q)
model.lambd = lambd
# Otherwise load normally
else:
model = load_model(model_type, configs["models_dir"], lambd=lambd, patch_size=patch_size, q=q)
exbits_list = load_exbits_list(model_type, method_type, top_frac, configs["exbits_dir"])
if isinstance(num_todo, int):
exbits_list = exbits_list[:num_todo]
if model_type == "roberta":
csv_saveto = f"q1t_{model_type}_q{q}_{method_type}_top{top_frac:.4f}_lam{lambd:.4f}.csv"
else:
csv_saveto = f"q1t_{model_type}_psz{patch_size}_q{q}_{method_type}_top{top_frac:.4f}_lam{lambd:.4f}.csv"
csv_saveto = os.path.join(configs["saveto_dir"], csv_saveto)
q1t_test_radii(model, exbits_list, configs["model2data"][model_type],
csv_saveto = csv_saveto)
if __name__ == "__main__":
configs = make_default_configs()
configs["saveto_dir"] = os.path.join(configs["base_dir"], "dump", "q1_theory")
assert os.path.isdir(configs["saveto_dir"])