-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq1_boxatk.py
218 lines (190 loc) · 8.55 KB
/
q1_boxatk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import sys
import copy
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision import datasets, transforms
from tqdm import tqdm
import pandas as pd
import math
import pathlib
torch.manual_seed(1234)
from my_models import *
from methods import *
from qheader import *
# Test stuff
def q1e_test_exbits(model, exbits_list, dataset,
start_ind = 0,
num_todo = None,
init_r_max_fracs = [1/8., 2/8., 3/8., 4/8.],
box_max_iters = -1,
do_box_attacks = True,
iter_header_msg = "",
do_save = True,
csv_saveto = None):
assert box_max_iters > 0
assert isinstance(model, MuS)
assert isinstance(exbits_list, list)
model.cuda().eval()
lambd = model.lambd
if do_save:
assert csv_saveto is not None
print(f"Will save to: {csv_saveto}")
true_labels = []
ones_labels, exbs_labels, ones_mu_labels, exbs_mu_labels = [], [], [], []
ones_gaps, exbs_gaps, ones_mu_gaps, exbs_mu_gaps = [], [], [], []
inc_init_r_maxs, inc_curr_r_maxs, inc_max_dists, inc_num_resets, inc_num_ces = [], [], [], [], []
dec_init_r_maxs, dec_curr_r_maxs, dec_max_dists, dec_num_resets, dec_num_ces = [], [], [], [], []
df = pd.DataFrame(columns=[
"data_ind",
"lambd", "p", "nnz",
"true_label", "ones_label", "exbs_label", "ones_mu_label", "exbs_mu_label",
"ones_gap", "exbs_gap", "ones_mu_gap", "exbs_mu_gap",
"inc_init_r_max", "inc_curr_r_max", "inc_max_dist", "inc_num_resets", "inc_num_ces",
"dec_init_r_max", "dec_curr_r_max", "dec_max_dist", "dec_num_resets", "dec_num_ces",
])
N = len(exbits_list)
num_todo = N - start_ind if num_todo is None else num_todo
todo = range(start_ind, start_ind + num_todo)
print(f"start {todo[0]}, end {todo[-1]}, total {len(todo)}")
assert todo[-1] <= N
for tdi, datai in enumerate(todo):
exbits = exbits_list[datai]
print(f"\n{3 * '*'} PID {MY_PID}, todo {tdi+1}/{len(todo)} ({datai+1}/{N}), lam {lambd:.4f}, {iter_header_msg} {30 * '*'}")
p, nnz = exbits.numel(), exbits.sum().int().item()
exbits = exbits.cuda()
x, true_label = dataset[datai]
true_labels.append(true_label)
x = x.cuda()
xx = x.unsqueeze(0)
# One-shot everything we wanna test through the model
exbsp = exbits.view(1,p)
onesp = torch.ones_like(exbsp)
zerosp = torch.zeros_like(exbsp)
x_test = torch.cat([xx, xx, xx, xx], dim=0)
alpha_test = torch.cat([onesp, exbsp, onesp, exbsp], dim=0)
mu_test = torch.cat([zerosp, zerosp, exbsp, exbsp], dim=0)
y_test = model(x_test, alpha=alpha_test, mu=mu_test)
y_sorted_values, y_sorted_order = y_test.sort(dim=1, descending=True)
ones_label, exbs_label, ones_mu_label, exbs_mu_label = y_sorted_order[:,0]
ones_labels.append(ones_label.item())
exbs_labels.append(exbs_label.item())
ones_mu_labels.append(ones_mu_label.item())
exbs_mu_labels.append(exbs_mu_label.item())
print(f"true {true_label}, ones ({ones_label}, mu {ones_mu_label}), exbs ({exbs_label}, mu {exbs_mu_label})")
ones_pA, exbs_pA, ones_mu_pA, exbs_mu_pA = y_sorted_values[:,0]
ones_pB, exbs_pB, ones_mu_pB, exbs_mu_pB = y_sorted_values[:,1]
ones_gaps.append((ones_pA - ones_pB).item())
exbs_gaps.append((exbs_pA - exbs_pB).item())
ones_mu_gaps.append((ones_mu_pA - ones_mu_pB).item())
exbs_mu_gaps.append((exbs_mu_pA - exbs_mu_pB).item())
# As long as the explanation is non-trivial, try something
if nnz > 0 and do_box_attacks:
# print(f"About to do incremental box attack")
todo_init_r_maxs = [int(p * frac) for frac in init_r_max_fracs]
astats = find_emp_inc_stability(model, x, exbits,
todo_init_r_maxs = todo_init_r_maxs,
max_iters = box_max_iters,
progress_bar = True)
inc_init_r_maxs.append(-1 if astats is None else astats["init_r_max"])
inc_curr_r_maxs.append(-1 if astats is None else astats["curr_r_max"])
inc_max_dists.append(-1 if astats is None else astats["max_iter_dist"])
inc_num_resets.append(-1 if astats is None else astats["num_resets"])
inc_num_ces.append(-1 if astats is None else astats["num_ces"])
# print(f"About to do decremental box attack")
dstats = find_emp_dec_stability(model, x, exbits,
todo_init_r_maxs = todo_init_r_maxs,
max_iters = box_max_iters,
progress_bar = True)
dec_init_r_maxs.append(-1 if dstats is None else dstats["init_r_max"])
dec_curr_r_maxs.append(-1 if dstats is None else dstats["curr_r_max"])
dec_max_dists.append(-1 if dstats is None else dstats["max_iter_dist"])
dec_num_resets.append(-1 if dstats is None else dstats["num_resets"])
dec_num_ces.append(-1 if dstats is None else dstats["num_ces"])
out_str = "box: "
out_str += f"A (crmax {inc_curr_r_maxs[-1]}, maxd {inc_max_dists[-1]}, nces {inc_num_ces[-1]}), "
out_str += f"D (crmax {dec_curr_r_maxs[-1]}, maxd {dec_max_dists[-1]}, nces {dec_num_ces[-1]}), "
print(out_str)
else:
inc_init_r_maxs.append(-1)
inc_curr_r_maxs.append(-1)
inc_max_dists.append(-1)
inc_num_resets.append(-1)
inc_num_ces.append(-1)
dec_init_r_maxs.append(-1)
dec_curr_r_maxs.append(-1)
dec_max_dists.append(-1)
dec_num_resets.append(-1)
dec_num_ces.append(-1)
this_df = pd.DataFrame({
"data_ind" : datai,
"lambd" : round(lambd,4), "p": p, "nnz": nnz,
"true_label" : true_labels[-1],
"ones_label" : ones_labels[-1],
"exbs_label" : exbs_labels[-1],
"ones_mu_label" : ones_mu_labels[-1],
"exbs_mu_label" : exbs_mu_labels[-1],
"ones_gap" : ones_gaps[-1],
"exbs_gap" : exbs_gaps[-1],
"ones_mu_gap" : ones_mu_gaps[-1],
"exbs_mu_gap" : exbs_mu_gaps[-1],
"inc_init_r_max" : inc_init_r_maxs[-1],
"inc_curr_r_max" : inc_curr_r_maxs[-1],
"inc_max_dist" : inc_max_dists[-1],
"inc_num_resets" : inc_num_resets[-1],
"inc_num_ces" : inc_num_ces[-1],
"dec_init_r_max" : dec_init_r_maxs[-1],
"dec_curr_r_max" : dec_curr_r_maxs[-1],
"dec_max_dist" : dec_max_dists[-1],
"dec_num_resets" : dec_num_resets[-1],
"dec_num_ces" : dec_num_ces[-1],
},
index=[datai])
df = pd.concat([df, this_df])
if do_save:
df.to_csv(csv_saveto)
return df
def q1e_run_stuff(model_type, configs,
lambds = [8/8, 7/8, 6/8, 5/8, 4/8, 3/8, 2/8, 1/8],
method_type = "shap",
top_frac = 0.2500,
patch_size = 28,
q = 16,
start_ind = 0,
num_todo = 250,
box_max_iters = 50,
do_box_attacks = True):
dataset = configs["model2data"][model_type]
exbits_list = configs["model2exbits"][model_type]
for i, lambd in enumerate(lambds):
model = load_model(model_type, configs["models_dir"], lambd=lambd, patch_size=patch_size, q=q)
if model_type == "roberta":
csv_saveto = f"q1e_{model_type}_q{model.q}_{method_type}_top{top_frac:.4f}_lam{lambd:.4f}.csv"
else:
csv_saveto = f"q1e_{model_type}_psz{patch_size}_q{model.q}_{method_type}_top{top_frac:.4f}_lam{lambd:.4f}.csv"
csv_saveto = os.path.join(configs["saveto_dir"], csv_saveto)
header_msg = f"{model_type}"
print(f"Launching: {csv_saveto}")
q1e_test_exbits(model, exbits_list, dataset,
box_max_iters = box_max_iters,
csv_saveto = csv_saveto,
iter_header_msg = header_msg,
do_box_attacks = do_box_attacks,
start_ind = start_ind,
num_todo = num_todo)
if __name__ == "__main__":
configs = make_default_configs()
configs["saveto_dir"] = os.path.join(configs["base_dir"], "dump", "q1_boxatk")
method_type, top_frac = "shap", 0.25
vit16_exbits_list = load_exbits_list("vit16", method_type, top_frac, configs["exbits_dir"])
resnet50_exbits_list = load_exbits_list("resnet50", method_type, top_frac, configs["exbits_dir"])
roberta_exbits_list = load_exbits_list("roberta", method_type, top_frac, configs["exbits_dir"])
configs["model2exbits"] = {
"vit16" : vit16_exbits_list,
"resnet50" : resnet50_exbits_list,
"roberta" : roberta_exbits_list
}
assert os.path.isdir(configs["saveto_dir"])
# run_stuff("vit16", configs)