-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpapers.yml
391 lines (350 loc) · 16.1 KB
/
papers.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
- year: 2024
papers:
- title: 'AR-Pro: Counterfactual Explanations for Anomaly Repair with Formal Properties'
link: https://arxiv.org/abs/2410.24178
authors: Xiayan Ji, Anton Xue, Eric Wong, Oleg Sokolsky, Insup Lee
conference: Neural Information Processing Systems (NeurIPS), 2024
short: NeurIPS 2024
website:
blog:
github: https://github.com/xjiae/arpro
external: false
- title: 'The FIX Benchmark: Extracting Features Interpretable to eXperts'
link: https://arxiv.org/abs/2407.00075
authors: Helen Jin, Shreya Havaldar, Chaehyeon Kim, Anton Xue, Weiqiu You, Helen Qu, Marco Gatti, Daniel A. Hashimoto, Bhuvnesh Jain, Amin Madani, Masao Sako, Lyle Ungar, Eric Wong
conference:
short:
website: https://brachiolab.github.io/fix/
blog: https://debugml.github.io/fix/
github: https://github.com/BrachioLab/exlib/tree/main/fix
external: false
- title: 'Logicbreaks: A Framework for Understanding Subversion of Rule-based Inference'
link: https://arxiv.org/abs/2407.00075
authors: Anton Xue, Avishree Khare, Rajeev Alur, Surbhi Goel, Eric Wong
conference: International Conference on Learning Representations (ICLR), 2025
short: ICLR 2025
blog: https://debugml.github.io/logicbreaks/
github: https://github.com/AntonXue/tf_logic
external: false
- title: 'Crowd-sourced machine learning prediction of long COVID using data from the National COVID Cohort Collaborative'
link: https://www.sciencedirect.com/science/article/pii/S2352396424003694
authors: Timothy Bergquist, Johanna Loomba, Emily Pfaff, Fangfang Xia, Zixuan Zhao, Yitan Zhu, Elliot Mitchell, Biplab Bhattacharya, Gaurav Shetty, Tamanna Munia, Grant Delong, Adbul Tariq, Zachary Butzin-Dozier, Yunwen Ji, Haodong Li, Jeremy Coyle, Seraphina Shi, Rachael V. Philips, Andrew Mertens, Romain Pirracchio, Mark van der Laan, John M. Colford Jr., Alan Hubbard, Jifan Gao, Guanhua Chen, Neelay Velingker, Ziyang Li, Yinjun Wu, Adam Stein, Jiani Huang, Zongyu Dai, Qi Long, Mayur Naik, John Holmes, Danielle Mowery, Eric Wong, Ravi Parekh, Emily Getzen, Jake Hightower, Jennifer Blase
conference: eBioMedicine
short: eBioMedicine
website:
blog:
github:
external: true
- title: 'Avoiding Copyright Infringement via Machine Unlearning'
link: https://arxiv.org/abs/2406.10952
authors: Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, Eric Wong
conference: Findings of the Association for Computational Linguistics (NAACL), 2025
short: NAACL-Findings 2025
blog:
github:
external: true
- title: 'Data-Efficient Learning with Neural Programs'
link: https://arxiv.org/abs/2406.06246
authors: Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik, Eric Wong
conference: Neural Information Processing Systems (NeurIPS), 2024
short: NeurIPS 2024
blog: https://debugml.github.io/neural-programs/
github: https://github.com/alaiasolkobreslin/ISED/tree/v1.0.0
external: false
- title: 'Towards Compositionality in Concept Learning'
link:
authors: Adam Stein, Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong
conference: International Conference on Machine learning (ICML), 2024
short: ICML 2024
blog:
github:
external: false
- title: 'DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation'
link:
authors: Yinjun Wu, Mayank Keoliya, Kan Chen, Neelay Velingker, Ziyang Li, Emily J Getzen, Qi Long, Mayur Naik, Ravi B Parikh, Eric Wong
conference: International Conference on Machine learning (ICML), 2024
short: ICML 2024
blog:
github:
external: false
- title: 'JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models'
link: https://arxiv.org/abs/2404.01318
authors: Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian Tramer, Hamed Hassani, Eric Wong
conference: Neural Information Processing Systems (NeurIPS), 2024
short: NeurIPS 2024
website: https://jailbreakbench.github.io/
blog:
github: https://github.com/JailbreakBench/jailbreakbench/
external: false
- title: 'Defending Large Language Models against Jailbreak Attacks via Semantic Smoothing'
link: https://arxiv.org/abs/2402.16192
authors: Jiabao Ji, Bairu Hou, Alexander Robey, George J. Pappas, Hamed Hassani, Yang Zhang, Eric Wong, Shiyu Chang
conference:
short:
blog:
github:
external: true
- title: 'Evaluating Groups of Features via Consistency, Contiguity, and Stability'
link:
authors: Chaehyeon Kim, Weiqiu You, Shreya Havaldar, Eric Wong
conference: International Conference on Learning Representations (ICLR), 2024 Tiny Papers Track
short: ICLR 2024, Tiny Papers (Oral)
blog:
github:
external: false
- title: 'SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation'
link: https://arxiv.org/abs/2310.12508
authors: Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong, Sijia Liu
conference: International Conference on Learning Representations (ICLR), 2024
short: ICLR 2024
blog:
github: https://github.com/OPTML-Group/Unlearn-Saliency
external: true
- year: 2023
papers:
- title: 'Initialization Matters for Adversarial Transfer Learning'
link: https://arxiv.org/abs/2312.05716
authors: Andong Hua, Jindong Gu, Zhiyu Xue, Nicholas Carlini, Eric Wong, Yao Qin
conference: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024
short: CVPR 2024
blog:
github:
external: true
- title: 'Comparing Styles across Languages'
link: https://arxiv.org/abs/2310.07135
authors: Shreya Havaldar, Matthew Pressimone, Eric Wong, Lyle Ungar
conference: Empirical Methods in Natural Language Processing (EMNLP), 2023
short: EMNLP 2023
blog:
github:
external: false
- title: 'Sum-of-Parts Models: Faithful Attributions for Groups of Features'
link: https://arxiv.org/abs/2310.16316
authors: Weiqiu You, Helen Qu, Marco Gatti, Bhuvnesh Jain, Eric Wong
conference: XAI in Action Workshop at NeurIPS 2022
short:
blog: https://debugml.github.io/sum-of-parts/
github: https://github.com/DebugML/sop
external: false
- title: 'Jailbreaking Black Box Large Language Models in Twenty Queries'
link: https://arxiv.org/abs/2310.08419
authors: Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, Eric Wong
conference: 3rd IEEE Conference on Secure and Trustworthy Machine Learning, 2025
short: SaTML 2025
blog: https://jailbreaking-llms.github.io/
github: https://github.com/patrickrchao/JailbreakingLLMs
external: false
- title: 'SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks'
link: https://arxiv.org/abs/2310.03684
authors: Alexander Robey, Eric Wong, Hamed Hassani, George J. Pappas
conference:
short:
blog: https://debugml.github.io/smooth-llm/
github: https://github.com/arobey1/smooth-llm
external: false
- title: 'TorchQL: A Programming Framework for Integrity Constraints in Machine Learning'
link: https://arxiv.org/abs/2308.06686
authors: Aaditya Naik, Adam Stein, Yinjun Wu, Eric Wong, Mayur Naik
conference: Object-oriented Programming, Systems, Languages, and Applications (OOPSLA), 2024
short: OOPSLA 2024
blog:
github: https://github.com/TorchQL/torchql
external: false
- title: Stability Guarantees for Feature Attributions with Multiplicative Smoothing
link: https://arxiv.org/abs/2307.05902
authors: Anton Xue, Rajeev Alur, Eric Wong
conference: Neural Information Processing Systems (NeurIPS), 2023
short: NeurIPS 2023
blog: https://debugml.github.io/multiplicative-smoothing/
github: https://github.com/DebugML/mus
external: false
- title: 'TopEx: Topic-based Explanations for Model Comparison'
link: https://arxiv.org/abs/2306.00976
authors: Shreya Havaldar, Adam Stein, Eric Wong, Lyle Ungar
conference: International Conference on Learning Representations (ICLR), 2023 Tiny Papers Track
short: ICLR 2023, Tiny Papers
blog:
github:
external: false
- title: Rectifying Group Irregularities in Explanations for Distribution Shift
link: https://arxiv.org/abs/2305.16308
authors: Adam Stein, Yinjun Wu, Eric Wong, Mayur Naik
conference:
short:
blog:
github:
external: false
- title: Do Machine Learning Models Learn Statistical Rules Inferred from Data?
link: https://arxiv.org/abs/2303.01433
authors: Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong
conference: International Conference on Machine learning (ICML), 2023
short: ICML 2023
blog: https://debugml.github.io/SQRL/
github: https://github.com/DebugML/sqrl
external: false
- title: In-context Example Selection with Influences
link: https://arxiv.org/abs/2302.11042
authors: Tai Nguyen, Eric Wong
conference:
short:
blog: https://debugml.github.io/incontext-influences/
github: https://github.com/DebugML/incontext_influences
external: false
- title: Adversarial Prompting for Black Box Foundation Models
link: https://arxiv.org/abs/2302.04237
authors: Natalie Maus*, Patrick Chao*, Eric Wong, Jacob Gardner
conference:
short: DLSP 2023 Keynote
blog: https://debugml.github.io/adversarial-prompts/
github: https://github.com/DebugML/adversarial_prompting
external: false
- title: Faithful Chain-of-Thought Reasoning
link: https://arxiv.org/abs/2301.13379
authors: Qing Lyu*, Shreya Havaldar*, Adam Stein*, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, Chris Callison-Burch
short: IJCNLP-AACL, 2023
conference: IJCNLP-AACL, 2023
blog: https://debugml.github.io/fcot/
github: https://github.com/veronica320/Faithful-COT
external: false
- year: 2022
papers:
- title: A data-based perspective on transfer learning
link: https://arxiv.org/abs/2207.05739
authors: Saachi Jain*, Hadi Salman*, Alaa Khaddaj*, Eric Wong, Sung Min Park, Aleksander Madry
conference: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
short: CVPR 2023
blog: https://gradientscience.org/data-transfer/
github: https://github.com/MadryLab/data-transfer
external: true
- title: When does bias transfer in transfer learning
link: https://arxiv.org/abs/2207.02842
authors: Hadi Salman*, Saachi Jain*, Andrew Ilyas*, Logan Engstrom*, Eric Wong, Aleksander Madry
conference:
short:
blog: https://gradientscience.org/bias-transfer/
github: https://github.com/MadryLab/bias-transfer
external: true
- title: Missingness bias in model debugging
link: https://arxiv.org/abs/2204.08945
authors: Saachi Jain*, Hadi Salman*, Pengchuan Zhang, Vibhav Vineet, Sal Vemprala, Aleksander Madry
conference: International Conference on Learning Representations (ICLR), 2022
short: ICLR 2022
blog: https://gradientscience.org/missingness/
github: https://github.com/MadryLab/missingness
external: true
- year: 2021
papers:
- title: Certified patch robustness via smoothed vision transformers
link: https://arxiv.org/abs/2110.07719
authors: Hadi Salman*, Saachi Jain*, Eric Wong*, Aleksander Madry
conference: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022
short: CVPR 2022
blog: https://gradientscience.org/smoothing/
github: https://github.com/MadryLab/smoothed-vit
external: true
- title: "DeepSplit: Scalable verification of deep neural networks via operator splitting"
link: https://arxiv.org/abs/2106.09117
authors: Shaoru Chen*, Eric Wong*, J. Zico Kolter, Mahyar Fazlyab
conference: IEEE Open Journal of Control Systems (OJCS), 2022
short: OJCS 2022
blog:
github:
external: true
- title: Leveraging Sparse Linear Layers for Debuggable Deep Networks
link: https://arxiv.org/abs/2105.04857
authors: Eric Wong*, Shibani Santurkar*, Aleksander Madry
conference: International Conference on Machine learning (ICML), 2021 *Long Oral*
short: ICML 2021 (Oral)
blog: https://gradientscience.org/glm_saga/
github: https://github.com/madrylab/debuggabledeepnetworks
external: true
- year: 2020
papers:
- title: Learning perturbation sets for robust machine learning
link: https://arxiv.org/abs/2007.08450
authors: Eric Wong, J. Zico Kolter
conference: International Conference on Learning Representations (ICLR), 2021
short: ICLR 2021
blog: https://locuslab.github.io/2020-07-20-perturbation/
github: https://github.com/locuslab/perturbation_learning/
external: true
- title: Overfitting in adversarially robust deep learning
link: https://arxiv.org/abs/2002.11569
authors: Leslie Rice*, Eric Wong*, J. Zico Kolter
conference: International Conference on Machine learning (ICML), 2020
short: ICML 2020
blog:
github: https://github.com/locuslab/robust_overfitting/
external: true
- title: Neural network virtual sensors for fuel injection quantities with provable performance specifications
link: http://arxiv.org/abs/2007.00147
authors: Eric Wong, Tim Schneider, Joerg Schmitt, Frank R. Schmidt, J. Zico Kolter
conference: IEEE Intelligent Vehicles Syimposium (IV), 2020
short: IEEE IV 2020
blog:
github:
external: true
- title: "Fast is better than free: revisiting adversarial training"
link: https://arxiv.org/abs/2001.03994
authors: Eric Wong*, Leslie Rice*, J. Zico Kolter
conference: International Conference on Learning Representations (ICLR), 2020
short: ICLR 2020
blog:
github:
external: true
- year: 2019
papers:
- title: Adversarial robustness against the union of multiple perturbation models
link: https://arxiv.org/abs/1909.04068
authors: Pratyush Maini, Eric Wong, J. Zico Kolter
conference: International Conference on Machine learning (ICML), 2020
short: ICML 2020
blog:
github: https://github.com/locuslab/robust_union/
external: true
- title: Wasserstein adversarial examples
link: https://arxiv.org/abs/1902.07906
authors: Eric Wong, Frank R. Schmidt, J. Zico Kolter
conference: International Conference on Machine Learning (ICML), 2019
short: ICML 2019
blog:
github:
external: true
- year: 2018
papers:
- title: Scaling provable adversarial defenses
link: https://arxiv.org/abs/1805.12514
authors: Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, J. Zico Kolter
conference: In Neural Information Processing Systems (NeurIPS), 2018
short: NeurIPS 2018
blog:
github: https://github.com/locuslab/convex_adversarial/
external: true
- year: 2017
papers:
- title: Provable defenses against adversarial examples via the convex outer adversarial polytope
link: https://arxiv.org/abs/1711.00851
authors: Eric Wong, J. Zico Kolter
conference: "International Conference on Machine Learning (ICML), 2018; Best defense paper at [NIPS 2017 ML & Security Workshop](https://machine-learning-and-security.github.io/)"
short: ICML 2018
blog: https://locuslab.github.io/2019-03-12-provable/
github: https://github.com/locuslab/convex_adversarial/
external: true
- title: A Semismooth Newton Method for Fast, Generic Convex Programming
link: https://arxiv.org/abs/1705.00772
authors: Alnur Ali*, Eric Wong*, J. Zico Kolter
conference: International Conference on Machine Learning (ICML), 2017
short: ICML 2017
blog:
github: https://github.com/locuslab/newton_admm/
external: true
- year: 2015
papers:
- title: An SVD and Derivative Kernel Approach to Learning from Geometric Data
link: http://zicokolter.com/publications/wong2015svdkernel.pdf
authors: Eric Wong, J. Zico Kolter
conference: Conference on Artificial Intelligence (AAAI), 2015
short: ICML 2015
blog:
github:
external: true