-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainPSD.jl
115 lines (96 loc) · 3.4 KB
/
TrainPSD.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#=
TrainPSD:
- Julia version:
- Author: blaine
- Date: 2020-07-06
=#
using Flux
using Flux: logitcrossentropy
using Base.Iterators: partition
using Printf, BSON
using Parameters: @with_kw
using CUDA
if has_cuda()
try
import CuArrays
CuArrays.allowscalar(false)
catch ex
@warn "CUDA is installed, but CuArrays.jl fails to load" exception=(ex,catch_backtrace())
end
end
include("CommonFunctions.jl")
@with_kw mutable struct Args
lr::Float64 = 3e-3
epochs::Int = 100
batch_size = 1000 #number of events per batch for each type
savepath::String = "./model"
n_train_evts::Int = 100000 #total number of events used for training for each type
n_test_evts::Int = 20000 #total number of events used for testing for each type
n_samples::Int = 150
nx::Int = 14
ny::Int = 11
end
function train(; kws...)
args,ntype,modelname,train_dataset,test_dataset,indirs = init(; kws...)
@info("Loading data set")
sptrain, sptest = getData(args,indirs,ntype,train_dataset,test_dataset)
@info("Building basic CNN model...")
model = buildBasicCNN(args,ntype)
# Load model and datasets onto GPU, if enabled
sptrain = gpu.(sptrain)
sptest = gpu.(sptest)
model = gpu(model)
# write the dataset to file
writeToFile(train_dataset,joinpath(args.savepath,string(modelname,"_train_files.txt")))
writeToFile(test_dataset,joinpath(args.savepath,string(modelname,"_test_files.txt")))
# Make sure our model is nicely precompiled before starting our training loop
model(sptrain[1][1])
function loss(x, y)
ŷ = model(x)
return logitcrossentropy(ŷ, y)
end
# Train our model with the given training set using the ADAM optimizer and
# printing out performance against the test set as we go.
opt = ADAM(args.lr)
@info("Beginning training loop...")
best_acc = 0.0
last_improvement = 0
for epoch_idx in 1:args.epochs
# Train for a single epoch
Flux.train!(loss, params(model), sptrain, opt)
# Terminate on NaN
if anynan(paramvec(model))
@error "NaN params"
break
end
# Calculate accuracy:
acc = accuracy(sptest..., model,ntype)
@info(@sprintf("[%d]: Test accuracy: %.4f", epoch_idx, acc))
# If our accuracy is good enough, quit out.
if acc >= 0.999
@info(" -> Early-exiting: We reached our target accuracy of 99.9%")
break
end
# If this is the best accuracy we've seen so far, save the model out
if acc >= best_acc
@info(string(" -> New best accuracy! Saving model out to ",modelname,".bson"))
BSON.@save joinpath(args.savepath,string(modelname,".bson")) params=cpu.(params(model)) epoch_idx acc
best_acc = acc
last_improvement = epoch_idx
end
# If we haven't seen improvement in 5 epochs, drop our learning rate:
if epoch_idx - last_improvement >= 5 && opt.eta > 1e-6
opt.eta /= 10.0
@warn(" -> Haven't improved in a while, dropping learning rate to $(opt.eta)!")
# After dropping learning rate, give it a few epochs to improve
last_improvement = epoch_idx
end
if epoch_idx - last_improvement >= 10
@warn(" -> We're calling this converged.")
break
end
end
end
cd(@__DIR__)
@time train()
@time test()