-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharea of irregular polygon by monte carlo method.py
140 lines (101 loc) · 3.22 KB
/
area of irregular polygon by monte carlo method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import random as rand
import matplotlib.pyplot as plt
def point_inside_outside(polygon, point):
INT_MAX = 10000
def onSegment(p: tuple, q: tuple, r: tuple) -> bool:
if ((q[0] <= max(p[0], r[0])) &
(q[0] >= min(p[0], r[0])) &
(q[1] <= max(p[1], r[1])) &
(q[1] >= min(p[1], r[1]))):
return True
return False
def orientation(p: tuple, q: tuple, r: tuple) -> int:
val = (((q[1] - p[1]) * (r[0] - q[0])) - ((q[0] - p[0]) * (r[1] - q[1])))
if (val > 0):
return 1
elif (val < 0):
return 2
else:
return 0
def doIntersect(p1, q1, p2, q2):
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
if (o1 != o2) and (o3 != o4):
return True
if (o1 == 0) and (onSegment(p1, p2, q1)):
return True
if (o2 == 0) and (onSegment(p1, q2, q1)):
return True
if (o3 == 0) and (onSegment(p2, p1, q2)):
return True
if (o4 == 0) and (onSegment(p2, q1, q2)):
return True
return False
def is_inside_polygon(points: list, p: tuple) -> bool:
n = len(points)
if n < 3:
return False
extreme = (INT_MAX, p[1])
count = i = 0
while True:
next = (i + 1) % n
if (doIntersect(points[i], points[next], p, extreme)):
if orientation(points[i], p, points[next]) == 0:
return onSegment(points[i], p, points[next])
count += 1
i = next
if (i == 0):
break
return (count % 2 == 1)
return is_inside_polygon(points=polygon, p=point)
randomXY = []
X = []
Y = []
for number in range(1000):
XY = rand.uniform(2, 9), rand.uniform(2, 9)
randomXY.append(XY)
for points in randomXY:
X.append(points[0])
Y.append(points[1])
plt.scatter(X, Y, c='red')
def area_polygon(point):
x = []
y = []
for p in point:
x.append(p[0])
y.append(p[1])
ar = 0
for index in range(len(point) - 1):
ar += (x[index] * y[index + 1]) - (y[index] * x[index + 1])
return abs(ar / 2)
square_xy = [(2, 2), (9, 2), (9, 9), (2, 9), (2, 2)]
polygon_xy = [(3, 3), (3, 5), (6, 8), (8, 8), (6, 6), (7, 3), (3, 3)]
area_of_square = area_polygon(square_xy)
area_of_polygon = area_polygon(polygon_xy)
def area_of_irregular_shape():
count_inside_point = 0
count_outside_point = 0
for points in randomXY:
if (point_inside_outside(polygon_xy, points)):
count_inside_point += 1
else:
count_outside_point += 1
return (count_inside_point / len(randomXY)) * area_of_square
area_of_irregular_shape_approx = area_of_irregular_shape()
SX = [2, 9, 9, 2, 2]
SY = [2, 2, 9, 9, 2]
Y = []
XY = [(3, 3), (3, 5), (6, 8), (8, 8), (6, 6), (7, 3), (3, 3)]
X = []
for point in XY:
X.append(point[0])
Y.append(point[1])
plt.plot(SX, SY, c='green')
plt.plot(X, Y, )
plt.title('Approx Area= %d' % (area_of_irregular_shape_approx))
plt.scatter(X, Y)
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.show()